
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336578164

THE COSMIC ENERGY GRAVITATIONAL GENESIS OF THE INCREASE OF THE

SEISMIC AND VOLCANIC ACTIVITY OF THE EARTH IN THE BEGINNING OF

THE 21 ST CENTURY AD

Book · December 2012

CITATIONS

20
READS

14

1 author:

Some of the authors of this publication are also working on these related projects:

Sergey V. Simonenko Global World-wide Prognostication Project, initiated in 2012 AD View project

Sergey V. Simonenko Global World-wide Prognostication Project View project

Sergey Victorovich Simonenko

Russian Academy of Sciences

38 PUBLICATIONS   252 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Sergey Victorovich Simonenko on 16 October 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/336578164_THE_COSMIC_ENERGY_GRAVITATIONAL_GENESIS_OF_THE_INCREASE_OF_THE_SEISMIC_AND_VOLCANIC_ACTIVITY_OF_THE_EARTH_IN_THE_BEGINNING_OF_THE_21_ST_CENTURY_AD?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/336578164_THE_COSMIC_ENERGY_GRAVITATIONAL_GENESIS_OF_THE_INCREASE_OF_THE_SEISMIC_AND_VOLCANIC_ACTIVITY_OF_THE_EARTH_IN_THE_BEGINNING_OF_THE_21_ST_CENTURY_AD?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sergey-V-Simonenko-Global-World-wide-Prognostication-Project-initiated-in-2012-AD?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sergey-V-Simonenko-Global-World-wide-Prognostication-Project?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergey-Simonenko?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergey-Simonenko?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Russian-Academy-of-Sciences?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergey-Simonenko?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergey-Simonenko?enrichId=rgreq-30dc583b02272cb1684fcfcc4aba8720-XXX&enrichSource=Y292ZXJQYWdlOzMzNjU3ODE2NDtBUzo4MTQ1MTczMTEyNDYzMzhAMTU3MTIwNzQ2ODc4NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


  
Sergey V. Simonenko 

 
THE COSMIC ENERGY GRAVITATIONAL 

GENESIS OF THE INCREASE OF THE SEISMIC 
AND VOLCANIC ACTIVITY OF THE EARTH IN 

THE BEGINNING OF THE 21ST CENTURY AD 
 
 
 

 
 

 
 

Nakhodka 
 

2012 



  

 

ТHE MINISTRY OF EDUCATION AND SCIENCE OF 

THE RUSSIAN FEDERATION 

 
INSTITUTE OF TECHNOLOGY AND BUSINESS 

 
 
 

Dr. Sergey V. Simonenko 
 

 
 
 
 
 
 

THE COSMIC ENERGY GRAVITATIONAL GENESIS OF 
THE INCREASE OF THE SEISMIC AND VOLCANIC 

ACTIVITY OF THE EARTH IN THE BEGINNING 
 OF THE 21ST CENTURY AD 

 
 
 
 
 
 
 
 
 
 
 
 
 

Nakhodka 
2012 

 



  

UDC  536:531:550.3:55 
BBK 22.3 
C37 
 

Scientific  Editor: Dr. phys.-math. sci.,  Prof. G. Sh. Tsitsiashvili, 
Deputy Director of the Office of Russian Academy of Sciences, 

 Institute for Applied Mathematics IAM FEB RAS 
 

Reviewers of the monograph: 
Dr. geol.-mineral. sci.,  Prof. V.A. Abramov, Head of the laboratory of the regional geology  

and  tectonophysics of the V. I. Il’ichev Pacific Oceanological Institute, 
 Far Eastern Branch of Russian Academy of Sciences; 

Dr. sci. techn.  A.N. Zhirabok, Professor of the Far Eastern State Technical University  
 

                Simonenko Sergey V.  
C37        The Cosmic Energy Gravitational Genesis of the Increase of the Seismic and Volcanic Activity of the   
               Earth in the Beginning of the 21st  Century AD: Monograph. - Nakhodka:  Institute of Technology  
               and Business, 
               2012. – 220 p.     
               ISBN 978-5-89694-140-8 
 

The founded cosmic geology and the cosmic geophysics [Simonenko, 2007a; 2007b; 2007] are extended 
by taking into account the established evaluation of the significant energy gravitational influence on the Earth of 
the Sun owing to the gravitational interaction of the Sun with the outer large planets.  The solution of the 
fundamental problem [Imbrie et al., 1993] of the origin of the major 100-kyr glacial cycle during the 
Milankovitch chron [Berger, 1994] is presented based on the consideration of the combined predominant 
energy gravitational influence on the Earth of the Sun, the Moon, the Venus and the Jupiter. The cosmic energy 
gravitational genesis of the increase of the seismic and volcanic activity of the Earth in the end of the 20th 
century AD [Abramov, 1997] and in the beginning of the 21st  century AD is founded based on the generalized 
formulation [Simonenko, 2007] of the first law of thermodynamics applied for the Earth subjected to the cosmic 
non-stationary energy gravitational influences of the Solar System. Based on established range of the 
fundamental periodicities 708696TT fclim1,ftec, ÷==  years (determined by the combined non-stationary energy 
gravitational influences on the Earth of the Sun owing to the Jupiter and the Saturn, the system Sun-Moon, the 
Venus and the Jupiter) of the global seismotectonic, volcanic and climatic activities of the Earth,  the cosmic 
geophysics is founded the range  AD [Simonenko, 2012] of the maximal seismotectonic, volcanic 
and climatic activities of the Earth during the past 

20612020 ÷
708696 ÷ years of  the history of humankind. 

For specialists in non-equilibrium thermodynamics, continuum mechanics, hydrodynamics, physical 
oceanography, geology, geophysics, seismology, volcanology, climatology,  hydrogeophysics and glaciology. 
 
                                                                                                            UDC  536:531:550.3:55 
                                                                                                            BBK 22.3 
                                     

    © Simonenko Sergey V., 2012  
    © Institute of Technology and Business, 2012 
    © V. I.  Il’ichev Pacific Oceanological Institute, Far Eastern Branch of      
         Russian Academy of Sciences, 2012 
    © All rights reserved, 2012.  The  PDF file of  this monograph may  be  
        distributed  within the scientific  community  on  a non-profitable basis     
        only. All  other  forms  of  transmission, distribution and  other editions of   

                           the monograph require the written permission from the author.  
                          Author’s e-mail: sergeyvsimonenko@yahoo.com 

 



3 
 

                                             This monograph is the result of the lifetime 
                                                          permanent mental work dedicated to the foundation                                          
                                                          of the Thermohydrogravidynamics (Cosmic Physics) 
                                                          of the Solar System intended for the long- term deterministic 
                                                          predictions of  the strong earthquakes, the planetary cataclysms,   
                                                          the  Earth’s climate and the Earth’s fresh water resources in           
                                                          order to sustain the stable evolutionary development, the  
                                                          survival, greatness and cosmic dignity of the humankind                                  
                                                          in the present and forthcoming epochs of the critical 
                                                          surrounding cosmic,  seismotectonic, volcanic and climatic 
                                                          conditions of the human existence on the Earth.   
                                                                  The monograph is dedicated to the blessed memory  
                                                          of the great Russian scientist, Academician Victor I. Ilyichev 
                                                         supported in 1993 the author’s hydrodynamic and  
                                                         oceanographic PhD’s studies (as the head of the Doctoral  
                                                         Council of Oceanography) resulted to this monograph. 
 
                                                                  Nolite flere, non est mortuus, sed dormit.   
                                                                  Dignum laude virum Musa vetat mori.                                                        
                                                                                                                                                                        
                                                            
 

INTRODUCTION 
 

It is well known that the problems of the effective control of the space-time variations of the oceanic 
medium [Akulichev, Bezotvetnykh et al., 2001; Akulichev, Dzyuba et al., 2001; Makarov, Uleysky and 
Prants, 2003; Simonenko and Lobanov, 2012] and the geophysical environment [Dolgikh, 2000; Dolgikh et 
al., 2002; Dolgikh, 2004; Dolgikh et al., 2004], the problems of the long-term predictions of the strong 
earthquakes [Abramov, 1997; Vikulin, 2003; Dolgikh et al., 2007], the climate change [Milankovitch, 1938; 
Hays et al., 1976; Berger and Loutre, 1991; Syun-Ichi Akasofu, 2004; Ponomarev et al., 2007] and the 
planetary cataclysms [Simonenko, 2007] are the significant problems of the modern sciences. In this regard, 
it was pointed out [Akulichev, Morgunov et al., 2007] that “the global problems of climate change and 
catastrophic natural phenomena (related with the dynamic oceanic processes) require the extended theoretical 
and experimental studies in this field with application of newest technologies”.   

 It is well known that “the deterministic prediction of the time of origin, hypocentral (or epicentral) 
location, and magnitude of an impending earthquake is an open scientific problem” [Sgrigna and  Conti, 
2012]. It was conjectured [Sgrigna and  Conti, 2012]  that the possible earthquake prediction and warning 
must be carried out on a deterministic basis. However, it was pointed out [Sgrigna and  Conti, 2012]  with 
some regret that the modern “study of the physical conditions that give rise to an earthquake and the 
processes that precede a seismic rupture of an ordinary event are at a very preliminary stage and, 
consequently, the techniques of prediction of time of origin, epicentre, and magnitude of an impending 
earthquake now available are below standard”. The authors [Sgrigna and  Conti, 2012]  argued that “a new 
strong theoretical scientific effort is necessary to try to understand the physics of the earthquake”. It was 
conjectured [Sgrigna and  Conti, 2012]  that the present level of knowledge of the geophysical processes “is 
unable to achieve the objective of a deterministic prediction of an ordinary seismic event, but it certainly will 
in a more or less distant future tackle the problem with seriousness and avoiding scientifically incorrect, 
wasteful, and inconclusive shortcuts, as sometimes has been done”. It was conjectured [Sgrigna and  Conti, 
2012]  conjectured that “it will take long time (may be years, tens of years, or centuries) because this 
approach requires a great cultural, financial, and organizational effort on an international basis”. It was 
conjectured  [Sgrigna and  Conti, 2012]  that a possible contribution to a deterministic earthquake prediction 
approach is related with observations and physical modelling of earthquake precursors to formulate, in 
perspective, “a unified theory able to explain the causes of its genesis, and the dynamics, rheology, and 
microphysics of its preparation, occurrence, postseismic relaxation, and interseismic phases”.  

It was pointed out [Zhu and Zhan, 2012] that the gravity changes (derived from regional gravity 
monitoring data in China from 1998 to 2005) exhibited noticeable variations before the occurrence of two 
large earthquakes in 2008 in the areas surrounding Yutian (Xinjiang) and Wenchuan (Sichian). These results 
are consistent with the previous empirical finding [Abramov, 1997; p. 60] that the anomalous variations of 
the gravity field on the background of the Moon-Sun induced variations go in front of the earthquakes. A 



4 
 

recent research by Zhan and his colleagues [Zhan, Zhu et al., 2011] demonstrated that significant gravity 
changes were observed before all nine large earthquakes that ruptured within or near mainland China from 
2001 to 2008. It was pointed out [Zhu and Zhan, 2012] that  the past experience and empirical data showed 
that “earthquakes typically occur within one to two years after a period of significant gravity changes in the 
region in question”. It was concluded [Zhu and Zhan, 2012] that the “additional research is needed to remove 
the subjective nature in the determination of the timeframe of a forecasted earthquake”.  

It was conjectured [Console, Yamaoka and Zhuang, 2012] that the recent destructive earthquakes 
occurred in China (2008), Italy (2009), Haiti (2010), Chile (2010), New Zealand (2010), and Japan (2011) 
“have shown that, in present state, scientific researchers have achieved little or almost nothing in the 
implementation of short- and medium-term earthquake prediction, which would be useful for disaster 
mitigation measures”. It was conjectured [Console, Yamaoka and Zhuang, 2012] that “this regrettable 
situation could be ascribed to the present poor level of achievements in earthquake forecast”. It was pointed 
out [Console, Yamaoka and Zhuang, 2012] that “although many methods have been claimed to be capable of 
predicting earthquakes (as numerous presentations on earthquake precursors regularly show at every 
international meeting), the problem of formulating such predictions in a quantitative, rigorous, and 
repeatable way is still open”. It was formulated [Console, Yamaoka and Zhuang, 2012] that “another 
problem of practical implementation of earthquake forecasting could be due to the lack of common 
understanding and exchange of information between the scientific community and the governmental 
authorities that are responsible for earthquake damage mitigation in each country: they operate in two 
different environments, they aim at different tasks, and they generally speak two different languages”. It was 
pointed out [Console, Yamaoka and Zhuang, 2012] that “the way how seismologists should formulate their 
forecasts and how they should transfer them to decision-makers and to the public is still a tricky issue”. It 
was clearly formulated [Console, Yamaoka and Zhuang, 2012] that “the formulation of probabilistic 
earthquake forecasts with large uncertainties in space and time and very low probability levels is still 
difficult to be used by decision-making people”. It was conjectured [Console, Yamaoka and Zhuang, 2012] 
that “in real circumstances the authorities deal with critical problems related to the high cost of evacuating 
the population from an area where the scientific methods estimate an expected rate of destructive earthquake 
as one in many thousand days, while they require much more deterministic statements”. The authors 
[Console, Yamaoka and Zhuang, 2012]  invited researches “to report methods and case studies that could 
concretely contribute or, at least seemed promising, to improve the present frustrating situation, regarding the 
practical use of earthquake forecasts”.  

In this monograph we found the cosmic energy gravitational genesis of the increase of the seismic and 
volcanic activity of the Earth in the end of the 20th century AD [Abramov, 1997] and in the beginning of the 
21st  century AD [Simonenko, 2007]. The cosmic energy gravitational genesis of the increase of the seismic 
and volcanic activity of the Earth in the end of the 20th century AD [Abramov, 1997] and in the beginning of 
the 21st  century AD [Simonenko, 2007] is based on the generalized formulation [Simonenko, 2007] of the first 
law of thermodynamics applied for the Earth subjected to the cosmic non-stationary energy gravitational 
influences of the Solar System. 

To do this, we use the synthesis [Simonenko, 2007] of the thermodynamic approaches [Gibbs, 1873; 
de Groot and Mazur, 1962; Gyarmati, 1970; Landau and Lifshitz, 1976; Prigogine 1977; Akulichev, 1978; 
Keller and Hess, 1981; Evans, Hanley and Hess, 1984; Prigogine and Stengers, 1984;  Nicolis and Prigogine, 
1989; Simonenko, 2004, 2006, 2007a; 2007; 2008; 2009; 2010], the continuum mechanical and 
hydrodynamic approaches [Helmholtz, 1858; Sommerfeld, 1949; Batchelor, 1967; Akulichev, 1978; Landau 
and Lifshitz, 1988; Saffman, 1992; Kogan and Simonenko, 1992; Simonenko and Kogan, 1992; Sedov, 
1994; Simonenko, 1992, 1995, 2001, 2004, 2006; 2007a; 2007; 2008; 2009; 2010], the acoustic approaches 
[Akulichev, 1978; Akulichev, Bezotvetnykh et al., 2001; Akulichev, Dzyuba et al., 2001; Makarov, Uleysky 
and Prants, 2003; Dzyuba, 2006; Dolgikh et al., 2007; Akulichev, Morgunov et al., 2007; Akulichev, 
Bugaeva et al., 2011], the classical theory of the Newtonian gravity, the astronomical approaches  
[Chandler, 1892; Perelman, 1956; Zhirmunsky and Kuzmin, 1990; Gor’kavyi and Fridman, 1994; Avsjuk 
and Suvorova, 2007; Simonenko, 2007], the geological approaches [Khain, 1958; Verhoogen, Turner, 
Weiss, Wahrhaftig and Fyte, 1970; Milanovsky, 1979; Abramov, 1993; Abramov, 1997; Hofmann, 1990; 
Avsjuk, 1996; Khain, 2003; Abramov and Molev, 2005; Avsjuk and Suvorova, 2007; Morozov, 2007; Khain 
and Poletaev, 2007; Vikulin and Melekestcev, 2007; Pavlenkova, 2007; Tveritinova and Vikulin, 2007; 
Simonenko, 2007a; 2007; 2008; 2009; 2010; 2011; 2012], the geophysical approaches [Chandler, 1892; 
Munk and Hassan, 1961; Runcorn et al., 1988; Chao and Gross, 1995; Abramov, 1993; Abramov, 1997; 
Dolgikh, 2000; Dolgikh, et al., 2002; Dolgikh et al., 2004; Dolgikh, 2004; Vikulin, 2003; Dolgikh et al., 
2007; Simonenko, 2007a; 2007; 2008; 2009; 2010; 2011; 2012],  the seismological approaches [Turner, 
1925; Davison, 1936; Richter, 1964; Keylis-Borok and Malinovskaya, 1964; Clark, Dibble, Fyfe, Lensen 



and Suggarte, 1965; Johnston, 1965; Fedotov, 1965; Ambraseys, 1970; Shimazaki and Nakata, 1980; 
Suyehiro, 1984; Jacob, 1984; Christensen and Ruff 1986; Vikulin and Vikulina, 1989; Barrientos and  
Kansel, 1990; Ilyichev and Cherepanov, 1991; Abramov, 1997; Vikulin, 2003; Simonenko, 2007a; 2007; 
2008; 2009; 2010; 2011; 2012], the climatological approaches [Milankovitch, 1938; Hays et al., 1976; 
Berger and Loutre, 1991; Imbrie et al., 1993; Muller and MacDonald, 1995; Berger, 1999; Elkibbi and Rial, 
2001; Bol’shakov, 2003; Pinxian et al., 2003; Simonenko, 2007a; 2007; 2008; 2009; 2010; 2011; 2012; 
Simonenko, Gayko and Sereda, 2012], oceanological approaches [Webster and Yang, 1992; Fu and Teng, 
1993; Latif and Barnett, 1994; Yamagata and Masumoto, 1992; Miller et al., 1994; Oort and Yienger, 1996; 
Delworth et al., 1996;  Nakamura et al., 1997; Mantua et al., 1997;  Minobe, 1997; Zhang et al., 1997; 
Thompson and Wallace, 1998; Overland et al., 1999; Minobe and Mantua, 1999;  Ponomarev et al., 1999a;  
Ponomarev et al., 1999b; Wang and Ikeda, 2000; White and Cayan, 2000; Minobe, 1997; Miller and 
Schneider, 2000; Diaz et al., 2001; Li et al., 2001; Tourre et al., 2001; Nakamura et al., 2002; Global-
regional linkages in the Earth system, 2002;  Gong et al., 2003; Auad, 2003;  Qiu, 2003; Ponomarev et al., 
2003; Vasilevskaya et al., 2003; Savelieva et al., 2004; Polonsky et al., 2004; Krokhin, 2004; Ogi and 
Tachibana, 2006; Ponomarev et al., 2007; Lobanov et al., 2007;  Simonenko, 2007a; 2007; 2008; 2009; 
2010; 2011; 2012; Simonenko and Lobanov, 2011; 2012; Simonenko, Lobanov and Sereda, 2012] and the 
hydro-geophysical  approaches [Tugarinov, 1973; Moskalev, 1991; Gorbunova and Spivak, 1997; 
Simonenko, 2007a; 2007; 2008; 2009; 2010]. 

We use the established generalized differential formulation [Simonenko, 2007a; 2007; 2008] of the 
first law of thermodynamics (for moving rotating deforming compressible heat-conducting stratified 
macroscopic continuum region  subjected to the non-stationary Newtonian gravity): τ

                                ++ ττ dKdU τπd dGδAQ np, ++δ= τ∂                                    
extending the classical formulation [Gibbs, 1873] by taking into account (along with the classical 
infinitesimal change of heat  and  the classical infinitesimal change of the internal energy Qδ ≡τdU dU ) 

the infinitesimal increment of the macroscopic kinetic energy , the infinitesimal increment of the 

gravitational potential energy , the generalized expression [Simonenko, 2007a; 2007] for the 

infinitesimal  work   done on the continuum region 

τdK

τπd
τ∂np,δA τ  by the surroundings of , the infinitesimal 

amount  of energy (given by the expression (1.52)) added (or lost) as a result of the Newtonian non-
stationary gravitational energy influence on the continuum region 

τ

dG
τ  during the infinitesimal time interval 

dt .   
In Section 1 we begin by considering the inherent physical incompleteness of the classical expression 

[de Groot and Mazur, 1962;  Gyarmati, 1970]  for the macroscopic kinetic energy per unit mass  defined 
(in classical non-equilibrium thermodynamics) as the sum of the macroscopic translational kinetic energy per 

unit mass =

ε k

ε t 2
1 v  of the mass center of a continuum region  and  the macroscopic internal rotational 

kinetic energy per unit mass =

2

ε r
1
2
θ 2ω ,  where v is the speed of the mass center of a small continuum 

region,  is an angular velocity of internal rotation [Gyarmati,  1970], ω θ  is an inertia moment per unit 
mass of a small continuum region [de Groot and Mazur, 1962]. The classical de Groot and Mazur expression 
has inherent physical incompleteness [Simonenko, 2004] related with the questionable assumption about the 
rigid-like rotation of a small continuum region. The classical de Groot and Mazur expression [de Groot and 
Mazur, 1962] does not consider the non-equilibrium component of the macroscopic velocity field related 
with the velocity shear defined by the rate of strain tensor e . ij

We proved [Simonenko, 2006] the necessity of development  of the new conception of the 
macroscopic internal shear kinetic energy suggested earlier explicitly by Evans, Hanley and Hess [Evans, 
Hanley and Hess, 1984] and Simonenko [Simonenko, 1992]. In Subsection 1.1 we present a new physical 
concept [Simonenko, 2004] of the macroscopic internal shear kinetic energy expressing the macroscopic 
kinetic energy of the non-equilibrium (irreversible) dissipative shear motion near the mass center of a small 
macroscopic continuum region. We present also a new physical concept [Simonenko, 2004] of the 
macroscopic internal kinetic energy of shear-rotation coupling expressing the kinetic energy of local 
coupling between irreversible dissipative shear and reversible rigid-like rotational macroscopic continuum 
motions near the mass center of a small macroscopic continuum region. Basing on the analysis of the relative 
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continuum motion in the Euclidean space in the inertial Cartesian coordinate system  K, we present the 
analytical formula (1.6) for the macroscopic kinetic energy [Simonenko, 2004] of a small macroscopic 
continuum region considered in a stratified shear three-dimensional flow. 

The macroscopic  kinetic energy  of a small continuum region K τ τ  (in a stratified shear three-

dimensional flow) is presented as the sum of the macroscopic translational kinetic energy  , the classical 

de Groot and Mazur’s macroscopic internal rotational kinetic energy , the macroscopic internal shear 

kinetic energy  [Simonenko, 2004] and the macroscopic internal kinetic energy of shear-rotational 

coupling  [Simonenko, 2004]  with a small correction of the order O  determined by the 

diameter  of a continuum region . In Subsection 1.1 we present also the analytical formula (1.13) 

[Simonenko, 2004] for the macroscopic kinetic energy per unit mass 

Kt

Kr
Ks

Κ s,r
co pu (d τ

7 )
d τ τ

ε k  of a small macroscopic continuum 
region  considered in a stratified shear three-dimensional flow. The macroscopic kinetic energy per unit 
mass  is presented [Simonenko, 2004] as a sum of the macroscopic translational kinetic energy per unit 

mass =

τ
ε k

ε t 2
1 v  of the mass center of a continuum region, the classical  macroscopic internal rotational 

kinetic energy per unit mass  [de Groot and Mazur, 1962;  Gyarmati,  1970], the new macroscopic 

internal shear kinetic energy per unit mass 

2

ε r
ε s  [Simonenko, 2004] and the new macroscopic internal kinetic 

energy of shear-rotational coupling per unit mass ε  [Simonenko, 2004] with a small correction. In 
Subsection 1.1 we present the definition of the macroscopic internal kinetic energy (of a small continuum 
region), which may be considered [Simonenko, 2004] as the macroscopic kinetic energy in the 

s,r
coup

′K - 
coordinate system related with the mass center of a continuum region. We consider the consequences of the 
obtained formulae (1.6) and (1.13) for the macroscopic kinetic energy and the macroscopic internal kinetic 
energy of the homogeneous continuum sphere and cube. The presented expression (1.13) for  and its 
particular form (1.24) for homogeneous continuum regions of spherical and cubical shapes generalized 
[Simonenko, 2004] the classical de Groot and Mazur expression in classical non-equilibrium 
thermodynamics [de Groot and Mazur, 1962; Gyarmati, 1970]  by taking into account the new macroscopic 
internal shear kinetic energy per unit mass 

ε k

ε s , which expresses the kinetic energy of irreversible dissipative 
shear motion, and also the new macroscopic internal kinetic energy of shear-rotational coupling per unit 
mass ,  which expresses the kinetic energy of local coupling between irreversible dissipative shear and 

reversible rigid-like rotational macroscopic continuum motions. The deduced expression (1.13) for 

coup
rs,ε

ε k  

confirmed [Simonenko, 2004] the postulate [Evans, Hanley and Hess, 1984] that the velocity shear (eij ≠ 0) 
represents an additional energy source in the postulated formulation [Evans, Hanley and Hess, 1984] of the 
first law of thermodynamics for non-equilibrium deformed states of continuum motion.  

Following the “Statistical thermohydrodynamics of irreversible strike-slip-rotational processes” 
[Simonenko, 2007a]  and the “Thermohydrogravidynamics of the Solar System” [Simonenko, 2007],  in 
Subsection 1.2 we present the generalized differential formulation (1.43) of the first law of thermodynamics  
(in the Galilean frame of reference) for non-equilibrium shear-rotational states of the deformed finite one-
component individual continuum (characterized by the symmetric stress tensor Т ) region  moving in the 
non-stationary gravitational field.  

τ

In Subsection 1.3 we present the generalized differential formulation [Simonenko, 2007a; 2007] of the 
first law of thermodynamics (in the Galilean frame of reference) for non-equilibrium shear-rotational states 
of the deformed finite individual region τ  of the compressible viscous Newtonian one-component 
continuum moving in the non-stationary gravitational field. We present the generalization [Simonenko, 

2007a; 2007] of  the classical [Gibbs, 1873] expression =δ τ∂,npA pdVδW −=−  by taking into account 

(for Newtonian continuum) the infinitesimal works cAδ  and sAδ , respectively, of acoustic and viscous 

Newtonian forces acting during the infinitesimal time interval dt  on the boundary surface τ∂  of the 
individual continuum region .  τ
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Based on the generalized differential formulation (1.53) of the first law of thermodynamics (equivalent 
to the formulation (1.43)), in  Subsection 1.4 we present the analysis  [Simonenko, 2007a; 2007] of the 
gravitational energy mechanism of the gravitational energy supply into the continuum region τ  owing to the 
local time increase of the potential  of the gravitational field inside the continuum region  subjected to  
the non-stationary Newtonian gravitational field.  

ψ τ

In Subsection 1.5 we present the evaluation [Simonenko, 2007a; 2007] of the time periodicity of the 
global volcanic and climate variability induced by the non-stationary cosmic energy gravitational influences 
on the Earth.  

Using the established [Simonenko, 2004; 2006] generalized expression (1.6) for the total macroscopic 

kinetic energy )(K τ α  of each subsystem  α, in Subsection 1.6 we present the conditions [Simonenko, 
2007] of the thermodynamic equilibrium in the closed thermohydrogravidynamic system. In Subsection 1.6.1 
we consider the equilibrium state of the closed thermohydrodynamic system in classical statistical physics 
[Landau and Lifshitz, 1976]. In Subsection 1.6.2 we present the foundation [Simonenko, 2007] of the 
conservation law of the total energy for the closed thermodynamic system  in the frame of the continuum 
model. In Subsection 1.6.3 we present the consideration [Simonenko, 2007] of the classical statistical 
properties of the thermodynamically equilibrium subsystem in classical statistical physics [Landau and 
Lifshitz, 1976]. In Subsection 1.6.4 we present the definition of entropy (of the thermodynamic system in 
classical statistical physics [Landau and Lifshitz, 1976]) related with the Galilean principle of relativity. In 
Subsection 1.6.5 we present the formulation of the condition [Simonenko, 2007] of the thermodynamic 
equilibrium for the closed thermohydrogravidynamic system considered in the coordinate system 

τ

sysK ′  of the 

mass center  of the thermohydrogravidynamic system under imposed conservation laws of the total 
energy and the total angular momentum. In Subsection 1.6.6 we present the generalized expression 
[Simonenko, 2007] for the angular momentum of the subsystem 

sysC

ατ  (the small macroscopic continuum 

region ) for the non-equilibrium  thermodynamic state. In Subsection 1.6.7 we present the condition 
(1.117) of the thermodynamic equilibrium [Simonenko, 2007] for the closed thermohydrogravidynamic 
system (consisting of N thermohydrogravidynamic subsystems) considering in the inertial coordinate system 

 related with the mass center  of the thermohydrogravidynamic system. In Subsection 1.6.8 we 
present the conditions of the thermodynamic equilibrium [Simonenko, 2007] of the closed 
thermohydrogravidynamic system consisting of N thermohydrogravidynamic subsystem considered in the 
arbitrary inertial coordinate system 

ατ

sysK ′ sysC

K . In Subsection 1.6.8.1 we present the condition (1.121) [Simonenko, 
2007] of the thermodynamic equilibrium (of the closed thermohydrogravidynamic system) describing the 
relative movements of the mass centers of all subsystems. In Subsection 1.6.8.2 we present the foundation 
[Simonenko, 2007] of the conditions (1.125) and (1.118) of the thermodynamic equilibrium of the closed 
thermohydrogravidynamic system relative to the macroscopic non-equilibrium kinetic energies [Simonenko, 
2004] of the subsystems  τα.  

Following the “Statistical thermohydrodynamics of irreversible strike-slip-rotational processes” 
[Simonenko, 2007a] and the “Thermohydrogravidynamics of the Solar System” [Simonenko, 2007],  in 
Subsection 1.7 we present (taking into account the shear-rotational thermodynamic states of the  considered  
subsystem ) the generalization of the Le Chatelier – Braun principle [Landau and Lifshitz, 1976] on the 
closed rotational thermohydrogravidynamic systems  (

τ
τ  + τ ) consisting of two subsystems    and τ τ . We 

present the physical interpretation [Simonenko, 2007a; 2007] of the relaxation processes (after the  
deformational influences on the  subsystem  τ ) in the rotational thermohydrogravidynamic systems  ( τ  + 
τ ) in terms of the total  entropy of the rotational thermohydrogravidynamic systems  (  + τ τ ). 

In Subsection 1.8 we present the subsequent generalization (1.155) of the established generalized 
differential formulation (1.50) [Simonenko, 2007a; 2007; 2008; 2009; 2010] of the first law of 
thermodynamics. The subsequent generalization (1.155) of the first law of thermodynamics is suggested for 
description of moving rotating deformed compressible heat-conducting stratified individual macroscopic 
region  of turbulent electromagnetic plasma subjected to the non-stationary Newtonian gravitational and 
electromagnetic fields. 

τ

In Section 2 we present the fundamentals of the cosmic geology [Simonenko, 2007] applicable for the 
planets of the Solar System. In Subsection 2.1 we present the expressions [Simonenko, 2007] for the total 
energy and the total angular momentum  of the planet τ

ατ
E

ατM α  (and the satellite of the planet) taking 

into account the internal thermohydrogravidynamic structure of the planet τα  (and the satellite of the planet). 
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Considering the Solar System as the open thermohydrogravidynamic system containing the set of separate 
thermohydrogravidynamiс subsystems (the planets τα and the satellites of the planets) and disregarding the 
presence of atmospheres and hydrospheres (of the planets and the satellites of the planets), we present  the 
expressions (2.17) and (2.18)  for the total energy and the total angular momentum [Simonenko, 2007] of the 
Solar System consisting of  N cosmic material objects (the Sun, the planets, the satellites of the planets, the 
midget planets, known asteroids and comets of the Solar System). Using the expressions (2.17) and (2.18), 
we present the evidence [Simonenko, 2007] of the mutual energy transformations between the accumulated 
internal energies (of the accumulated internal energies of deformation, compression and strain of the 
continuum of the planets), the macroscopic internal rotational energy [de Groot and Mazur, 1962; Gyarmati, 
1970] and the macroscopic internal non-equilibrium kinetic energies [Simonenko, 2004]  of the planets. We 
present the evidence [Simonenko, 2007] that the mutual energy transformations can result to the evolutionary 
changes of the directions (and axes) of rotation of the planets and satellites (of the planets) of the Solar 
System. 

Taking into account the system of the expressions (2.19) and (2.20) for the total energy and the total 
angular momentum of the subsystem (the subsystem of the planet ( +τ τ τ τ ) without the  surrounding 
subsystem τ  (the atmosphere or the atmosphere and hydrosphere)) of the planet ( +τ τ ), we demonstrate the 
evidence [Simonenko, 2004а; 2007] of the mutual energy transformations between the accumulated internal 
energy  of the subsystem  and the macroscopic internal rotational kinetic energy  (of the 

subsystem of the planet ( +

τU τ τr )K(
τ τ τ )),  the macroscopic internal shear kinetic energy  (of the subsystem 

of the planet ( +

τs )K(

τ τ τ )) and the  macroscopic internal kinetic energy of shear-rotational coupling  
(of the subsystem of the planet ( +

τ
puco

rs, )(K
τ τ τ )) during the seismotectonic relaxation of the planet ( +τ τ ). We 

demonstrate that these energy transformations give the real evidence [Simonenko, 2007] to consider the 
seismotectonic relaxation of the planet ( +τ τ ) as the planetary process [Vikulin, 2003]. 

Using  the generalized  differential  formulation (2.21) of the first law of thermodynamics (taking into 
account the additional term related with the space-time density  of  heating due to the disintegration of 
radio-active elements and the human industrial activity inside the planet ( +

τe
τ τ ) of the Solar System), in 

Subsection 2.2 we present the non-catastrophic model [Simonenko, 2007a; 2007] of the 
thermohydrogravidynamic evolution of the total energy of the subsystems (  and τ τ ) of the planet ( +τ τ ), 
which evolve during some time period without formation of the new planetary fractures in the subsystem  
surrounding by the subsystem  

τ
τ  (representing the atmosphere or the atmosphere and hydrosphere). 

In Subsection 2.3 we present the synthesis of the cosmic geology [Simonenko, 2007; 2009; 2010] of 
the Earth (applicable for the terrestrial planets of the Solar System) taking into account the convection in the 
lower geo-spheres of the Earth (the planet), the density differentiation, the translational, rotational and 
deformational movements of the tectonic plates, the creation of the new planetary tectonic fractures induced 
by the energy gravitational influences of the Solar System and our Galaxy. Using the generalized differential 
formulation (2.21) of the first law of thermodynamics, in Subsection 2.3.1 we present the 
thermohydrogravidynamic N-layer model [Simonenko, 2007; 2009; 2010] of the non-fragmentary geo-
spheres of the Earth (the planet of the Solar System). Based on the deduced [Simonenko, 2007] evolution 
equation  (2.30) of the total energy  of the subsystem  (consisting of N successively  embedded to each 

other subsystems (geo-spheres) , , …, , ) of the planet ( +
τE τ

Nτ 1-Nτ 2τ 1τ τ τ ), in Subsection 2.3.1 we present the 

expression (2.31) for the necessary power  )(∆W ibr Σ  (in particular, of the external cosmic energy 
gravitational  influence), which is sufficient [Simonenko, 2007] to break the crystalline root (of the 
considered continental and oceanic planetary tectonic formations characterized [Abramov and Molev, 2005; 
p. 245] by  the mantle penetrated deep roots) in one section characterized by the area . Based on the 
combined data  [Abramov and Molev, 2005; p. 245; Pavlenkova, 2007] about the roots of continents, we 
present the evidence [Simonenko, 2007] that the translational mobility of the upper subsystem  =  

(along with a separate tectonic plates and geo-blocks of the subsystem = ) of the Earth  is greatly 
restricted by the deepened  roots of the continental and the oceanic  planetary formations. We present  (for 
two data  [Abramov and Molev, 2005; p. 245; Pavlenkova, 2007; p. 107] about the roots of continents) the 
evidence [Simonenko, 2007] that it is easier to realize (by action of the external cosmic gravitational field) 
the assumed [Pavlenkova, 1995] rotation of the mantle (as a whole) relative to the fluid  kernel with the 
slippage on the boundary of the kernel and the mantle of the Earth than to split the mantle of the Earth by 

i∆Σ

1τ extτ

1τ extτ
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means of the new global tectonic fracture into two equal parts in the different sides of the main secant plane 
intersecting the centre of the Earth. Using  the evolution equation (2.32)  for  the sum   of the total  
macroscopic kinetic energy  and the total macroscopic potential (gravitational) energy    of the 
subsystem  (of the Earth or a planet of the Solar System), we present the evidence [Simonenko, 2007] that 
the revealed time period 100 million years  [Hofmann, 1990] of  the maximal endogenous activity of the 
Earth [Morozov, 2007; p. 496] is induced by the periodic changes (characterized by the time period of 200 
million years) of the potential of the gravitational field (of the Solar System and our Galaxy) influencing on 
the Earth considered as the cosmic material object (in the frame of the Solar System) moving  around the 
center of our Galaxy. 

ττ πK +

τK τπ
τ

Based on the generalized differential formulation (2.21) of the first law of thermodynamics 
(containing the new additional term related with the space-time density  of the sources of heat), in 
Subsection 2.3.2 we present the synthesis of the thermohydrogravidynamic translational-shear-rotational N-
layer tectonic model [Simonenko, 2007] of the fragmentary geo-spheres of the Earth (of the planet ( +

τe

τ τ ) of 
the Solar System). We present the evolution equation (2.36) of the total energy of the geo-sphere =  
(the first upper layer of the subsystem  of the planet ( +

1τ extτ
τ τ τ )). The evolution equation (2.36) represents the 

thermohydrogravidynamic model of the translational-shear-rotational tectonics of  moving rotating 
deforming compressible heat-conducting stratified macroscopic geo-blocks   (j = 1, 2, …, ) surrounded  
by the coupled viscous plastic layers and subjected to the non-stationary Newtonian gravity and heating 
related with disintegration of the radio-active elements (in the geo-sphere ).  

1jτ 1N

extτ
 In Subsection 2.3.3 we present the universal energy thermohydrogravidynamic approach [Simonenko, 

2007] of formation of the planetary fractures in the frame of the generalized differential formulation (2.21) of 
the first law of thermodynamics [Simonenko, 2007] and the thermohydrogravidynamic translational-shear-
rotational N-layer tectonic model [Simonenko, 2007] (presented in Subsection 2.3.2) of the fragmentary 
(consisting of geo-blocks) geo-spheres of the Earth (and the planet of the Solar System of the terrestrial 
group: the Mercury, the Venus and the Mars). Based on the generalized differential formulation (2.21) of the 
first law of thermodynamics and the mathematical inductive method, we present the evolution equations 
(2.39), (2.41) and (2.42) describing [Simonenko, 2007] the evolutions of the total energy of the geo-block 

 (of the first upper layer (geo-sphere) =  of the subsystem  of the planet ( +1jτ 1τ extτ τ τ τ )) under formation 
of the integer number of various uncrossed (between itself) fracture surfaces breaking the Earth’s crust. 
Using the deduced evolution equations (2.39), (2.41) and (2.42),  we formulate the established [Simonenko, 
2007] energy sources of the destruction in the geo-block : the  total non-stationary gravitational fields (the 
external cosmic and the terrestrial), the internal heat related with the disintegration of the radio-active 
elements, the heat flux from the  upper boundary of  the situated below second layer (subsystem)  and the 
work of stress forces on the  surface of the geo-block .  

1jτ

2τ

1jτ
In Section 3 we present the fundamentals of the cosmic geophysics [Simonenko, 2007] applicable for 

the planets of the Solar System. In Subsection 3.1 we consider the energy gravitational influences 
[Simonenko, 2007; 2009; 2010] on the Earth of the inner planets and the outer planets of the Solar System. 
In Subsection 3.1.1 we present the derivation of the analytical relation [Simonenko, 2009; 2010] for the 
energy gravitational influences (on the Earth) of the inner and the outer planets  in the second approximation 
of the elliptical orbits of the planets of the Solar System. In Subsection 3.1.2 we present the evaluation 
[Simonenko, 2007] of the relative maximal instantaneous energy gravitational influences (on the unit mass at 
the surface point  of the Earth) of the inner planets and the outer planets in the first approximation of the 
circular orbits of the planets. In Subsection 3.1.2 we present also the evaluation [Simonenko, 2009; 2010] of 
the relative maximal instantaneous energy gravitational influences (on the unit mass of the Earth at the mass 
center  of the Earth) of the inner and the outer planets in the first approximation of the circular orbits of 
the planets. In Subsection 3.1.3 we present the evaluation [Simonenko, 2007; 2009; 2010] of the relative 
values of the maximal integral energy gravitational influences on the Earth of the inner planets (the Mercury 
and the Venus) and the outer planets (the Mars, the Jupiter, the Saturn, the Uranus, the Neptune and the 
Pluto) in the approximation of the circular orbits of the planets of the Solar System.  

ЗD

ЗC

In Subsection 3.2 we present the evaluations [Simonenko, 2009; 2010] of the relative maximal 
(instantaneous and integral) energy gravitational influence of the Moon on the Earth as compared with the 
maximal (instantaneous and integral) energy gravitational influences on the Earth of the planets of the Solar 
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System. In Subsection 3.2.1 we present the evaluation [Simonenko, 2009; 2010] of the relative maximal 
instantaneous energy gravitational influence of the Moon on the Earth (as compared with the maximal 
instantaneous energy gravitational influences on the Earth of the planets of the Solar System) in the second 
approximation of the elliptical orbits of the Earth and the Moon around the combined mass center  

of the Earth and the Moon. In Subsection 3.2.2 we present the evaluation [Simonenko, 2009; 2010]  
of the maximal integral energy gravitational influence of the Moon on the Earth  (as compared with the 
maximal integral energy gravitational influences on the Earth of the planets of the Solar System) in the 
second approximation of the elliptical orbits  of the Earth and the Moon around the combined mass center  

of the Earth and the Moon.  

 MOON3,C

 MOON3,C
In Subsection 3.3 we evaluate the energy gravitational influence of the Sun on the Earth owing to the 

gravitational interaction of the Sun with the outer large planets (the Jupiter, the Saturn, the Uranus and the 
Neptune) of the Solar System. In Subsection 3.3.1 we evaluate the relative characteristic maximal positive 
instantaneous energy gravitational influences of the Sun on the Earth owing to the gravitational interaction of 
the Sun with the outer large planets of the Solar System. In Subsection 3.3.2 we evaluate the maximal 
positive integral energy gravitational influences of the Sun on the Earth owing to the gravitational interaction 
of the Sun with the outer large planets in the first approximation of the circular orbits  of the planets of the 
Solar System.  

In Subsection 3.4 we demonstrate the established [Simonenko, 2007; 2009; 2010] real cosmic energy 
gravitational genesis of the strong earthquakes and the global planetary cataclysms. Using the expression 
(3.51) for the maximal positive integral energy gravitational influence  of the Venus (i = 2) 

on the macroscopic continuum region  of the mass   near the surface point  of the Earth, in 
Subsection 3.4.1 we present the confirmation [Simonenko, 2007] of the real cosmic energy gravitational 
genesis of preparation of earthquakes. In Subsection 3.4.2 we demonstrate the evidence of the integral 
energy gravitational influence on the Earth of the Sun (owing to the gravitational interactions of the Sun with 
the Jupiter  and  the Saturn ) and the Moon as the predominant cosmic trigger mechanism of the 
earthquakes preparing by the combined integral energy gravitational influence  on the Earth of the Sun 
(owing to the gravitational interactions of the Sun with the Jupiter  and  the Saturn , the Uranus  and  

the Neptune ), the Venus, the Jupiter, the Moon, the Mars and the Mercury. In Subsection 3.4.3 we found 
the catastrophic planetary configurations established by the cosmic seismology [Simonenko, 2007]. In 
Subsection 3.4.3.1 we present the established [Simonenko, 2007] catastrophic planetary configurations 
related with the maximal (positive) and minimal (negative) combined integral energy gravitational influence 
on the Earth  of the planets of the Solar System. We formulate the global prediction 
thermohydrogravidynamic principles (consistent with the generalized differential formulations (1.43) and 
(1.50) of the first law of thermodynamics of the established cosmic seismology [Simonenko, 2007; 2008; 
2009; 2010]) associated with the maximal (positive) and minimal (negative) combined planetary integral 
energy gravitational influence on the Earth. In Subsection 3.4.3.2 we found the catastrophic planetary 
configurations related with the maximal (positive) and minimal (negative) combined integral energy 
gravitational influence on the Earth  of the Sun (owing to the gravitational interactions of the Sun with the 

Jupiter ,  the Saturn , the Uranus  and  the Neptune ) and the planets of the Solar System. We 
formulate the global prediction thermohydrogravidynamic principles (consistent with the generalized 
differential formulations (1.43) and (1.50) of the first law of thermodynamics of the established cosmic 
seismology [Simonenko, 2007; 2008; 2009; 2010]) associated with the maximal (positive) and minimal 
(negative) combined planetary and solar integral energy gravitational influence on the Earth of the planets of 
the Solar System and the Sun owing to the gravitational interaction of the Sun with the outer large planets 
(the Jupiter  the Saturn  the Uranus and the Neptune  

)m,D,τ(E τ32g

τ τm зD

5τ 6τ

5τ 6τ 7τ

8τ

3τ

3τ

5τ 6τ 7τ 8τ

,)(τ5 ,)(τ6 )(τ7 ).)(τ8

In Subsection 3.5 we present, classical shear (deformational) model [Короновский и Абрамов, 2000] 
of the earthquake focal region, the rotational model [Vikulin, 2003] of the earthquake focal region and the 
generalized thermohydrogravidynamic shear-rotational  model [Simonenko, 2007a; 2007; 2008] (of the 
earthquake focal region) taking into account the classical macroscopic rotational kinetic energy [de Groot 
and Mazur, 1962;  Gyarmati, 1970], the macroscopic non-equilibrium kinetic energies [Simonenko, 2004], 
the internal (terrestrial) energy gravitational influences and the external (cosmic) energy gravitational 
influences [Simonenko, 2007a; 2007; 2008] on the focal region of earthquakes. Using the evolution equation 
(1.67) (deduced from the generalized differential formulation (1.43) of the first law of thermodynamics) of 
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the total mechanical energy of the macroscopic continuum region τ  (of the compressible viscous Newtonian 
continuum), in Subsection 3.5.1 we present the thermodynamic foundation of the generalized 
thermohydrogravidynamic shear-rotational model [Simonenko, 2007a; 2007] and the classical shear 
(deformational) model [Короновский и Абрамов, 2000]  of the earthquake focal region. We demonstrated 
[Simonenko, 2007a; 2007] the physical adequacy of the classical deformational (shear) model 
[Короновский и Абрамов, 2000] of the earthquake focal region for the quasi-uniform medium of the 
Earth’s crust characterized by practically constant viscosity. Using the evolution equation (1.67) of the total 
mechanical energy of the macroscopic continuum region τ  (of the compressible viscous Newtonian 
continuum), in Subsection 3.5.2 we present the thermodynamic foundation of the rotational model [Vikulin, 
2003] of the earthquake focal region. We demonstrated [Simonenko, 2007a; 2007] the physical adequacy of 
the rotational model [Vikulin, 2003] of the earthquake focal region for the seismic zone of the Pacific Ring. 
In Subsection 3.5.3 we found the local energy and entropy prediction thermohydrogravidynamic principles 
determining the fractures formation in the macroscopic continuum  region  subjected the combined integral 
energy gravitational influence of the planets of the Solar System, the Moon and the Sun owing to the 
gravitational interaction of the Sun with the outer large planets (the Jupiter, the Saturn,  the Uranus and the 
Neptune). In Subsection 3.5.3.1 we formulate the local energy prediction thermohydrogravidynamic 
principles (determining the fractures formation in the macroscopic continuum  region ) related with the 
maximal (positive) and minimal (negative), respectively, combined integral energy gravitational influence on 
the macroscopic continuum  region  of the planets of the Solar System, the Moon and the Sun owing to the 
gravitational interaction of the Sun with the outer large planets (the Jupiter, the Saturn,  the Uranus and the 
Neptune). In Subsection 3.5.3.2 we formulate the local entropy prediction thermohydrogravidynamic 
principle determining the fractures formation in the macroscopic continuum region subjected the combined 
integral energy gravitational influence of the planets of the Solar System, the Moon and the Sun owing to the 
gravitational interaction of the Sun with the outer large planets (the Jupiter, the Saturn, the Uranus and the 
Neptune). 

τ

τ

τ

τ

In Subsection 3.6 we present the confirmation of the cosmic energy gravitational genesis [Simonenko, 
2007] of the seismotectonic  (and volcanic) activity and the global climate variability induced by the  cosmic 
non-stationary energy gravitational influences on the Earth of the system  Sun-Moon, the Venus,  the Mars, 
the Jupiter and the Sun owing to the gravitational interaction of the Sun with the Jupiter. In Subsection 3.6.1 
we present the empirically established [Turner, 1925; Мэй Ши-юн, 1960; Таmrazyan, 1962; Fedotov, 1965; 
Филлипас, 1965; Davison, 1936; Ambraseys, 1970; Christensen and Ruff 1986; Barrientos and Kansel, 
1990; Jacob, 1984; Shimazaki and  Nakata, 1980; Suyehiro, 1984; Clark, Dibble, Fyfe, Lensen and Suggarte, 
1965; Johnston, 1965; Abramov, 1997; p. 72; Vikulin and Vikulina, 1989; Vikulin, 2003; p. 16-17] time 
periodicities of the seismotectonic activity of the Earth. Using the equivalent generalized differential 
formulations (1.43), (1.50) and  (1.53) of the first law of thermodynamics [Simonenko, 2007] for the Earth, 
in Subsection 3.6.2 we present (in the frame of the real elliptical orbits of the Earth, the Sun, the Moon, the 
Venus, the Mars and the Jupiter) the successive approximations [Simonenko, 2007] for the time periodicities 
of the maximal (instantaneous or integral) separate cosmic non-stationary energy gravitational influences on 
the Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing to the gravitational 
interaction of the Sun with the Jupiter. According to the thermohydrogravidynamic theory [Simonenko, 
2007], these time periodicities correspond to the related time periodicities of the Earth’s periodic 
seismotectonic (and volcanic) activity and the global climate variability induced by the separate cosmic non-
stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, the Mars, the 
Jupiter and the Sun owing to the gravitational interaction of the Sun with the Jupiter. In Subsection 3.6.2.1 
we present the successive time periodicities [Simonenko, 2007] of the maximal (instantaneous and  integral) 
energy gravitational influences on the Earth of the system Sun-Moon. In Subsection 3.6.2.2 we present the 
successive time periodicities [Simonenko, 2007] of the maximal (instantaneous and integral) energy 
gravitational influences on the Earth of the Venus. In Subsection 3.6.2.3 we present the successive time 
periodicities of the maximal (instantaneous and integral) energy gravitational influences on the Earth of the 
Jupiter [Simonenko, 2007] and the Sun owing to the gravitational interaction of the Sun with the Jupiter. In 
Subsection 3.6.2.4 we present the successive time periodicities [Simonenko, 2007] of the maximal 
(instantaneous and integral) energy gravitational influences on the Earth of the Mars. Based on the 
equivalent generalized differential formulations (1.43), (1.48) and (1.53) of the first law of thermodynamics 
[Simonenko, 2007] used for the Earth, in Subsection 3.6.2.5 we present the time periodicities [Simonenko, 
2007] of the periodic global seismotectonic (and volcanic) activity and the global climate variability of the 
Earth induced by the combined different combinations  of the cosmic  energy gravitational influences on the 
Earth of the system  Sun-Moon, the Venus, the Jupiter, the Mars and the Sun owing  to the gravitational 
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interaction of the Sun with the Jupiter. In Subsection 3.6.3 we confirm the  real cosmic energy gravitational 
genesis [Simonenko, 2007] of the strongest Japanese earthquakes. In Subsection 3.6.4 we present the 
previous evaluation  [Simonenko, 2007] of the mean time  periodicities 94620 years and 107568  years of the 
global climate variability (related with the factor and factor determined by the cosmic non-
stationary energy gravitational influences on the Earth of the system  Sun-Moon, the Venus, the Mars, the 
Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter) and the mean time 
periodicities 100845 years and 121612.5 years of the global climate variability related with the factor 
determined by the cosmic non-stationary energy gravitational influences on the Earth of the system  Sun-
Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with 
the Jupiter. In Subsection 3.6.5 we present the real confirmation [Simonenko, 2007] of the cosmic energy 
gravitational genesis of the modern short-term time periodicities of the Earth’s global climate variability 
determined by the combined cosmic factors: G-factor  related with the combined cosmic non-stationary 
energy gravitational influences on the Earth of the system Sun-Moon, the Mercury, the Venus, the Mars, the 
Jupiter and the Sun owing to the gravitational interaction of the Sun with the Jupiter; -factor related to 
the tectonic-endogenous heating  of the Earth as a consequence of the periodic continuum deformation of the 
Earth due to the G -factor; -factor related to the periodic atmospheric-oceanic  warming or cooling as a 
consequence of the periodic variable (increasing or decreasing) output of the heated greenhouse volcanic 
gases and the related variable greenhouse effect induced by the periodic variable tectonic-volcanic activity 
(activization or weakening) due to the G -factor; -factor related to the periodic variations of the solar 
activity owing to the periodic variations of the combined planetary non-stationary energy gravitational 
influence on the Sun. 

-)G(a -)G(b

-)G(b

)G(a

)G(b

)G(c

In Subsection 3.7 we found the cosmic energy gravitational genesis of the seismotectonic (and 
volcanic) activity and the global climate variability induced (owing to the G-factor, -factor and -
factor) by the combined non-stationary cosmic energy gravitational influences on the Earth of the system  
Sun-Moon, the Venus,  the Mars, the Jupiter and the Sun (owing to the gravitational interaction of the Sun 
with  the Jupiter, the Saturn, the Uranus and the Neptune). In Subsection 3.7.1 we evaluate the time 
periodicities of the maximal (instantaneous and integral) energy gravitational influences of the Sun on the 
Earth owing to the gravitational interaction of the Sun with the outer large planets (the Jupiter, the Saturn, 
the Uranus and the Neptune). In Subsection 3.7.1.1 we present the time periodicities [Simonenko, 2007] of 
the maximal (instantaneous and integral) energy gravitational influences on the Earth of the Jupiter and the 
Sun owing to the gravitational interaction of the Sun with the Jupiter. In Subsection 3.7.1.2 we evaluate the 
time periodicities of the maximal (instantaneous and integral) energy gravitational influences on the Earth of 
the Saturn and the Sun owing to the gravitational interaction of the Sun with the Saturn. In Subsection 
3.7.1.3 we evaluate the time periodicities of the maximal (instantaneous and integral) energy gravitational 
influences on the Earth of the Uranus and the Sun owing to the gravitational interaction of the Sun with the 
Uranus. In Subsection 3.7.1.4 we evaluate the time periodicities of the maximal (instantaneous and integral) 
energy gravitational influences on the Earth of the Neptune and the Sun owing to the gravitational 
interaction of the Sun with the Neptune. In Subsection 3.7.1.5 we found the fundamental global time 
periodicities (related to the combined planetary, lunar and solar non-stationary energy gravitational 
influences on the Earth) of the Earth’s periodic global seismotectonic (and volcanic) activity and the global 
climate variability induced by the different combinations of the cosmic non-stationary energy gravitational 
influences on the Earth of the system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing to the  
gravitational interaction of the Sun with the Jupiter, the Saturn, the Uranus and the Neptune. In Subsection 
3.7.1.6 we present the thermohydrogravidynamic solution of the fundamental problem [Imbrie, Berger et al., 
1993] of the origin of the major 100-kyr glacial cycle (during Pleistocene) determined by the non-stationary 
energy gravitational influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun 
owing to the gravitational interactions of the Sun with the Jupiter, the Saturn, the Uranus and the Neptune.  

)G(a )G(b

In Subsection 3.8 we analyze the global seismicity and volcanic activity of the Earth from the biblical 
Flood (occurred in 2104 BC according to the orthodox biblical chronology) and predict the forthcoming 
range  AD of the maximal seismotectonic, volcanic and climatic activities of the Earth during 
the past years of the history of humankind. In Subsection 3.8.1 we present the foundation of the 
ranges of the fundamental global seismotectonic, volcanic and climatic periodicities 

 and 

20612020 ÷
708696 ÷

years708696TT fclim1,ftec, ÷==   years354348TT fclim2,ftec, ÷== determined by the combined 
predominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the 
Venus, the Jupiter and the Sun owing to the gravitational interactions of the Sun with the Jupiter and the 
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Saturn.  In Subsection 3.8.2 we present the evidence of the founded ranges of the fundamental global 
seismotectonic and volcanic time periodicities years708696TT fclim1,ftec, ÷==  and 

 based on the statistical analysis of the historical eruptions [Thordarson 
and Larsen, 2007] of the Katla and the Hekla volcanic systems in Iceland. In Subsection 3.8.2.1 we present 
the generalized formulation [Simonenko, 2005] of the weak law of large numbers used for the statistical 
analysis of the historical volcanic eruptions [Thordarson and Larsen, 2007]. In Subsection 3.8.2.2 we 
present the statistical analysis of the historical volcanic eruptions [Thordarson and Larsen, 2007] of Katla 
volcano. In Subsection 3.8.2.3 we present the statistical analysis of the historical volcanic eruptions 
[Thordarson and Larsen, 2007] of Hekla volcano. In Subsection 3.8.3 we present the confirmation of the 
cosmic energy gravitational genesis of the predominant short-range time periodicities (7i/6 years and 6j/5 
years determined by small integers i  and  j)  of the Chandler’s wobble of the Earth’s pole and sea water and 
air temperature variations. In Subsection 3.8.3.1 we found the cosmic energy gravitational genesis of the 
predominant time periodicities 

  years354348TT fclim2,ftec, ÷==

    years2.1yr5/6)T(T 1chclim1,1 =≈=  and   =≈= yr 6/7)T(T 2chclim1,2   

 of the global climate variability induced by the combined non-stationary energy 
gravitational influence on the Earth of the Venus, the Mercury and the Moon. In Subsection 3.8.3.2 we 
present the combined analysis of the Chandler’s wobble of the Earth’s pole [Simonenko,  2011] and the 
variations [Simonenko, Gayko and Sereda, 2012] of sea water and air temperature during 1969-2010 for the 
costal station Possyet of the Japan Sea.  

 ...years1.1666666.=

In Subsection 3.8.4 we present the evidence of the founded (in Subsection 3.8.1) range of the 
fundamental global periodicities yr708696TT fclim1,ftec, ÷==  (of the global seismotectonic and volcanic 
activities and the climate variability of the Earth) obtained from the established links between the great 
natural cataclysms in the ancient history of humankind from  the final collapse of the ancient Egyptian 
Kingdom  and the biblical Flood to the increase of the global seismicity and the global volcanic activity in 
the beginning of the 20th century [Richter, 1969] and the modern  increase of the global seismicity and the 
volcanic activity in the end of the 20th century [Abramov, 1997] and in the beginning of the 21st century 
[Simonenko, 2007; 2009; 2010]. In Subsection 3.8.4.1 we consider the great natural cataclysms in the 
history of humankind from the final collapse of the ancient Egyptian Kingdom (near 2190 BC) and the 
biblical Flood (occurred in 2104 BC according to the orthodox Jewish and Christian biblical chronology). In 
Subsection 3.8.4.2 we reveal the linkage of the last major eruption of Thera (1450 BC) [LaMoreaux, 1995] 
and the greatest earthquake destroyed the ancient Pontus (63 BC). In Subsection 3.8.4.3 we reveal the 
linkage of the greatest earthquake destroyed the ancient Pontus (63 BC), the earthquake destroyed the 
ancient Greek Temple of Artemis (614 AD) and the great frost event (628 AD) [LaMarche and Hirschboeck, 
1984] related with the atmospheric veil (recorded in Europe in 626 AD [Stothers and Rampino, 1983]) 
induced by the great unknown volcanic eruption (apparently, Rabaul’ [LaMarche and Hirschboeck, 1984] 
eruption). In Subsection 3.8.4.4 we reveal the linkage of the greatest earthquake destroyed the ancient 
Pontus (63 BC) and the great earthquakes [Vikulin, 2008] occurred in England (1318 AD and 1343 AD), 
Armenia (1319 AD), Portugal (1320 AD, 1344 AD and 1356 AD) and Japan (1361 AD). In Subsection 
3.8.4.5 we reveal the linkage of the final collapse of the ancient Egyptian Kingdom (occurred near 2190 
BC), the biblical Flood (occurred in 2104 BC according to the orthodox Jewish and Christian biblical 
chronology) and the last major  eruption of Thera  (1450 BC) [LaMoreaux, 1995]. In Subsection 3.8.4.6 we 
reveal the linkage of the planetary disasters in the Central Asia (10555 BC) [Bunsen, 1848, pp. 77-78, 88] 
and in the ancient Egyptian Kingdom (10450 BC) [Hancock, 1997], and the greatest earthquake destroyed 
the ancient Pontus (63 BC). In Subsection 3.8.4.7 we reveal the linkage of the previous great eruptions of 
Thera (Santorini) (between 1628 and 1450 BC [LaMoreaux, 1995]), the greatest (in the United States in the 
past 150 years up to 1872) earthquake in Owens Valley, California (1872 AD), the eruptions of Santorini in 
1866 and 1925 AD and the great eruption of Krakatau in 1883 AD. In Subsection 3.8.4.8 we reveal the 
linkage of the eruption of Tambora (1815 AD) and the Thera (Santorini) eruption in the range 1700 ÷  1640 
BC [Betancourt, 1987; Habberten et al., 1989]. In Subsection 3.8.4.9  we reveal the linkage of the increase 
of the global seismicity (along with the increase of the volcanic activity) in the end of the 19th century and in 
beginning of the 20th century [Richter, 1969] and the eruption of Thera (Santorini) between 1600 and 1500 
BC [Antonopoulos, 1992]. In Subsection 3.8.4.10 we reveal the linkage of the increase of the global 
seismicity (along with the increase of the volcanic activity) in the end of the 20th  [Abramov, 1997]  century 
and the eruption of Hekla  (1300 AD) [Thordarson and Larsen, 2007]  in Iceland and the great  earthquake 
(1303 AD) in China [Vikulin, 2008]. 

In Subsection 3.9 we present the evidence of the established [Simonenko, 2012] forthcoming range 
 AD of the maximal seismotectonic, volcanic and climatic activities of the Earth during AD 20612020 ÷
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the past years of the history of humankind. We present the evidence of the related subsequent 
subranges ,  and 

708696 ÷
AD  3(2023 ± AD3 38.2040 ± AD32061 ± ) of the increased peaks of the forthcoming 

global seismotectonic and volcanic activities and the climate variability of the Earth in the 21st century.  
The main results and conclusions are summarized in Section 4. 
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1. THE GENERALIZED FORMULATION OF THE FIRST LAW OF 
THERMODYNAMICS FOR MOVING ROTATING DEFORMING 

COMPRESSIBLE HEAT-CONDUCTING STRATIFIED 
MACROSCOPIC INDIVIDUAL CONTINUUM REGION τ  
SUBJECTED TO THE NON-STATIONARY NEWTONIAN 
GRAVITATIONAL AND ELECTROMAGNETIC FIELDS 

 
 

1.1. The generalized expression for the macroscopic kinetic energy of a small 
continuum region in non-equilibrium thermodynamics 

 
 

De Groot and Mazur defined  the macroscopic kinetic  energy per unit mass    as [de Groot and 

Mazur, 1962] the sum of the macroscopic translational kinetic energy  per unit mass = 

ε k

ε t 2
1 v   of a 

continuum region (particle)  mass  center  and the macroscopic internal rotational kinetic energy per unit 

mass =

2

ε r
1
2
θ 2ω : 

                                              =ε + = ε k t ε r 2
1

v  + 2 1
2
θ 2ω ,                                                             (1.1)  

where v  is the speed of the mass center of a small continuum region, ω   is an angular velocity of internal 
rotation [Gyarmati,  1970], θ  is an inertia moment per unit mass of a small continuum region [de Groot and 
Mazur, 1962].  Gyarmati’s  definition [Gyarmati, 1970] of the macroscopic  kinetic energy per unit mass is 
analogous to de Groot and Mazur’s one. The classical de Groot & Mazur's  and  Gyarmati’s definition  (1.1)  
of the  macroscopic  kinetic energy per unit mass for a shear flows has  some  inherent physical 
incompleteness associated with the assumption about  the rigid-like rotation of  the continuum region with 
the angular velocity vector ω . This definition is based on the assumption of local thermodynamic 
equilibrium since it does not consider the non-equilibrium shear component of the macroscopic continuum 
motion related with the rate of strain tensor e . However, the assumption of local thermodynamic 
equilibrium, as noted by de Groot and Mazur [de Groot and Mazur, 1962], may be justified only by 
reasonable agreement of the experimental results with the theoretical deductions based on this assumption.   

ij

  Thus, we see that the introduction of the conception of the ″shear energy″  is caused by the 
incompleteness of the definition for the macroscopic kinetic energy in classical non-equilibrium 
thermodynamics [de Groot and Mazur, 1962; Gyarmati, 1970]. We derive in Subsection 1.1 the formula for 
the macroscopic kinetic energy per unit mass of a small continuum region considered in a stratified shear 
three-dimensional flow. The obtained formula removes the limitations of the classical expression (1.1).  

Landau and Lifshitz defined [Landau and Lifshitz, 1976] the macroscopic internal energy of a small 
macroscopic continuum region as the difference between the total kinetic energy of the continuum region 
and kinetic energy of the translational macroscopic motion of the continuum region.  According to Landau 

and Lifshitz’s definition [Landau and Lifshitz, 1976] of the macroscopic internal energy, the term 
2
1
θ 2ω  

in the expression (1.1) is the internal energy of the  macroscopic (hydrodynamic) continuum motion. The 
classical definition [de Groot and Mazur, 1962;  Gyarmati,  1970] of the macroscopic internal  rotational 

kinetic energy per unit mass θ
2
1 2ω  is consistent with the Landau  and  Lifshitz’s definition of the 

macroscopic  internal energy.  We shall use further the Landau and Lifshits’s definition [Landau and 
Lifshitz, 1976] of the macroscopic internal energy.   
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Following the works [Simonenko, 2004; 2005; 2006; 2007a; 2007; 2008], we shall present the 
foundation of the generalized expression for the macroscopic kinetic energy in non-equilibrium 
thermodynamics. We shall assume that  τ   is a small individual continuum region (domain) bounded by the 



closed continual boundary surface  considered in the three-dimensional Euclidean space with respect to a 
Cartesian coordinate system 

τ∂
K . We shall consider the small continuum region τ  in a Galilean frame of 

reference with respect to a Cartesian coordinate system K  centred at the origin O  and determined by the 
axes  (see Fig. 1). X , X , X1 2 3

The unit normal K -basis coordinate vectors triad  is taken in the directions of the axes 

,  respectively. The 
321 ,, µµµ

X , X , X1 2 3 K -basis  vector  triad is taken to be right-handed in the order 

, see Fig. 1.  321 ,, µµµ g  is  the local gravity acceleration.   
 

 

 
Fig. 1. Cartesian coordinate system  of a Galilean frame of reference and the continuum region mass 
center-affixed Lagrangian coordinate system 

K
K ′  

  
                  

An arbitrary point  in three-dimensional physical space will be uniquely defined by the position-
vector  =   originating at the point  and terminating at the point . The 

continuum region-affixed  Lagrangian coordinate system 

P
r iiX µ ≡ (X1 ,X2 ,X3 ) O P

′K  (with the axes ) is centered to the 

mass center  of the continuum region 

x x x1 2, , 3
C τ . The axes  are taken parallel to the axes 

, respectively: the axis  parallel to the axis , where i=1, 2, 3. The unit normal 

x x x1 2 3, ,
X X X1 2, , 3 xi X i

′ −K basis coordinate vector triad   is taken in the directions of the axes , 

respectively. The 
321 ,, ννν x , ,1 2x x 3

′ −K basis vector triad is taken to be right-handed in the order . The 

mathematical differential of the position-vector , 
321 ,, ννν

r  ), x,  x, x(xδ 321ii ≡≡ νr expressed in terms of the 

coordinates   (i=1, 2, 3)  in the  x i ′K - coordinate system,  originates at the mass centre C  of the 
continuum region   and terminates at the arbitrary point   of the continuum region. τ P

The position-vector  of the mass center  of the continuum region rc C τ  in the K - coordinate system 
is given by the following expression      
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                                                                   =rc
1

mτ
∫∫∫
τ

ρdVr ,                                                                 (1.2)  

where 
                                                                  =   mτ ρ

τ

dV∫∫∫
is the mass of  the continuum region ,   is the  mathematical differential of physical 

volume of the continuum  region, 

τ dV = dX dX dX1 2 3

( )ρ ρ≡ r, t   is the   local  macroscopic  density of mass distribution,  

 is the position-vector of the continuum volume ,  is the time. The speed of the mass  centre  C  of 
the continuum region  is defined by the following expression      
r dV t

τ

                                                              =Vc dt
d cr

=

vρ
τ

τ

dV

m

∫∫∫
,                                                                (1.3)  

where dt
drv =  is the hydrodynamic velocity vector,  the operator ∇⋅∂∂ v+t/=d/dt  denotes the total 

derivative following the continuum substance [Batchelor, 1967]. The relevant three-dimensional fields such 
as the velocity and the local mass density (and also the first and the second derivatives of the relevant fields) 
are assumed to vary continuously throughout the entire continuum bulk of the continuum region τ . The 
instantaneous macroscopic kinetic energy of the continuum region τ  (bounded by the continuum  boundary 
surface )  is the sum of the kinetic energies of small parts constituting the continuum region τ  when the 
number of the parts, n tends to infinity and the maximum from their volumes tends to zero [Batchelor, 1967]:  

τ∂

                                                                  τK ≡ Vd
2
ρ

∫∫∫
τ

2v
,                                                                (1.4)  

where  is the local hydrodynamic  velocity vector, v ρ  is the local  mass density, dV   is  the  mathematical 
differential of physical volume of the continuum region. We use the common Riemann’s integral here and 
everywhere. 

For the analysis of the relative continuum motion in the physical space in the vicinity of the position-
vector  of the mass centre  we have the Taylor series expansion (consistent with the Helmholtz’s 
theorem [Helmholtz, 1858; Sommerfeld, 1949]) of the hydrodynamic velocity vector v  for each time 
moment : 

rc C
( )r

t

                           =  + v ( )r rc + δ v ( )rc ω ( )rc × rδ    +     + e r iµij j 
i, j=1

3

( )rc δ∑

                                                  + ∑ δδ
∂∂

∂3

1=kj,i,
kj

kj

i
2

rr
XX

v
2
1

iµ + ,                                                     (1.5)  resv

where  , ,   is the hydrodynamic velocity vector at the position-vector ; 

      is  the differential of the position-vector  ; 

v ( )r ≡ (v1( )r v2 ( )r v3 ( ))r r
δ r ≡ crr − ≡ ( , , )3 ≡δ δ δr r r1 2 )(x x x1 2 3, , r

                                       ω  ( )r ≡
2
1 (∇ × v ( ))r  = ( ω ω ω1 2 3, , )  

is the angular velocity of internal rotation (a half of the vorticity vector)  in  the  K - coordinate system  at   
the position-vector ;  r
                                                     vω ( )r ≡ (∇ × v ( ))r  
is the local  vorticity  in the  K - coordinate system  at   the position-vector ;   r

                                             = eij ( )r ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

i

j

j

i

X
v

X
v

2
1 )r()r(
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 is the rate of  strain tensor  in  the  K - coordinate system  at  the position-vector r , ( i, j=1, 2, 3); 

                                       ∇  ≡  
1

µ ∂
∂X1

 + 2µ ∂
∂X 2

  + 3µ ∂
∂X 3

  

is the gradient  operator; 

                                                            = ∑  resv
3

1=i
iiw µ

is the small residual part of the Taylor series expansion ( 2.5), where 

                                                     = wi ( )3dO τ ,  ( i= 1, 2,  3),  

                                                      d = τ
( )2

τBA,
B)(A,sup r

∂∈
  

is the diameter of the continuum region , the vector  originates at point  and terminates at 

point  of the surface . The linear on 

τ )BA( ,r A
B τ∂ δr terms of the Taylor series expansion (1.5) are presented in the 

classical form [Batchelor, 1967].  
Substituting formula (1.5) into the formula (1.4) and integrating by parts, then we obtain the following 

expression [Simonenko, 1995; 2001; 2004; 2006]: 

        =  +  = K τ K K Kt s,r
co p+ + +r s

uK Kres
1
2

mτ Vc
2  + 

1
2

Iik i k
i,k=1

3
ω ω( ) ( )r rc c∑  + 

                 + 
1
2

J e ejk ij c ik c
i, j,k=1

( ) ( )r r
3

∑ +  + ,                                           (1.6)  ε ωijk jm i
i j k m

J ( ) kme
, , ,

rc
=

∑
1

3

Kres

where  is the mass of the continuum region mτ τ ,  is the ik- component of the classical inertia tensor 
depending on the mass distribution in the continuum region 

I ik
τ  under consideration:  

       I =ik lim
n→∞

m x x xik j
2

j=1

3

i k

n

α α α α
α

δ ∑∑
⎛
⎝
⎜

⎞
⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎩

⎫
⎬
⎭=1
≡ δ

τ
ik j

2

j=1

3

i kx x  x∑∫∫∫
⎛
⎝
⎜

⎞
⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

′,K

ρdV ,                (1.7)  

where  are the i, k- components, respectively, of the vector x xiα α, k δ αr  originating at the mass centre  

of the continuum region  and terminating at the 

C
τ α -th part of the continuum region ;  is the mass of 

the -th part; x  are the i, k- components of the vector 

τ mα

α xi , k δr , respectively, in the ′ −K  coordinate 

system;  is the Kronecker delta-tensor: δ ik δ ik =1 for i=k, δ ik =0 for i ≠ k; is the third-order 

permutation symbol: ε =0 if any two indices are equal, 

ε ijk

ijk ε ijk =1 if (i, j, k) is an even permutation of (1, 2, 

3), =-1 if (i, j, k) is an odd permutation of (1, 2, 3);   is the j,k- component  classical centrifugal 

tensor depending on the mass distribution in the continuum region 

ε ijk J jk

τ  under consideration: 

                                         =J jk lim
n→∞

m x xj k
=1

n

α α α
α
∑⎧⎨
⎩

⎫
⎬
⎭
≡ x j

τ , ′
∫∫∫

K

xk ρdV ,                                           (1.8)  

Kres  =  is a small residual part of the macroscopic kinetic energy after substitution the Taylor 
series expansion (1.5) into formula (1.4).  

O (d τ
7 )

Formula (1.6) states that the macroscopic kinetic energy  of the small continuum region Kτ τ  is the 

sum of the macroscopic translational kinetic energy  of the continuum region  moving as a whole at 

speed  equal to the  speed  of the center of mass of  the continuum region 

Kt τ
Vc τ : 

                                                                   =Kt
1
2

m 2
τVc ;                                                                         (1.9)  

the  macroscopic   internal   rotational   kinetic  energy   of   the   continuum  region τ  (rotating with  Kr
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the angular velocity     ()( crω ≡ ω ω ω1 2 3( ), ( ), ( )r r rc c c ) as a  whole): 

                             = Kr
1
2

Iik i k
i,k=1

3

ω ω( ) ( )r rc c∑ ≡  
1
2

I ik ω ωi k( ) ( )r rc c ;                                      (1.10)  

the macroscopic internal shear kinetic energy  of the continuum region Ks τ  (subjected to deformation by 

the  local  shear related with the rate of strain tensor ): )(eij cr

                              =Ks
1
2

J e ejk ij ik
i, j,k=1

( ) ( )r rc c

3

∑ ≡ )(e)(eJ
2
1

ikijjk cc rr ;                                        (1.11)  

the  macroscopic  kinetic  energy  of   shear-rotational  coupling Κ s,r
co pu  (related  with  the  kinetic energy of 

local coupling  between irreversible  dissipative shear   and   reversible   rigid-like  rotational  macroscopic 
continuum   motions)  of  the  continuum  region τ : 

                         =Κ s,r
co pu ε ωijk jm i

i j k m
J ( ) ekm ( )rc

, , ,
rc

=
∑

1

3

≡ ε ωijk jm i kmJ e( ) ( )r rc c .                              (1.12)  

We adopt here and everywhere the Einstein summation convention: the repeated indices i, j, k, m are 
summed. The macroscopic internal rotational kinetic energy  is the classical [de Groot and Mazur, 1962; 
Gyarmati, 1970] kinetic energy of reversible (equilibrium) rigid-like macroscopic rotational continuum 
motion. The macroscopic internal shear kinetic energy  expresses the kinetic energy of   irreversible 

(non-equilibrium) shear continuum motion  related with the rate of strain tensor e . The macroscopic 

internal kinetic energy of the shear-rotational coupling  expresses the kinetic energy of the local 
coupling between irreversible deformation and reversible rigid-like rotation. We attach the additional word 
“internal” for designations of macroscopic kinetic energies in accordance with the Landau and Lifshitz’s  
definition [Landau and Lifshitz, 1976] of the internal energy of a small macroscopic thermodynamic system 
and also by bearing in mind the de Groot and Mazur’s and Gyarmati’s

K r

K s

ij

Ks,r
co pu

  definition [de Groot and Mazur, 

1962; Gyarmati, 1970] of the term ε =r 2
1
θ 2ω  in expression (1.1) as the macroscopic internal rotational 

kinetic energy per unit mass. 
The deduced expression (1.6) for  confirms the postulate [Evans, Hanley and Hess, 1984]  that the 

velocity shear (e ) represents an additional energy source taking into account in the Evans, Hanley and 
Hess’s extended formulation [Evans, Hanley and Hess, 1984] of the first law of thermodynamics for non-
equilibrium deformed states of continuum motion.  The energies K K  and  are the Galilean 

invariants with respect to different inertial 

K τ

ij 0≠

r s, , Ks,r
coup K res

K - coordinate systems as well as the local kinetic energy 
dissipation rate per unit mass =  in an incompressible viscous Newtonian continuum  

characterized by  the molecular kinematic viscosity 
disε ν2 2

ij )(e
ν . 

We obtained [Simonenko, 2004] from (1.6) the following expression for the macroscopic kinetic 

energy per unit mass =ε k

K
m

τ

τ
: 

                                           =  ε ε  =  ε k ε ε εt r s s,r
coup

res+ + + +

           = 
1
2

Vc
2 + 

1
2 1

3

θ ω ωik i k
i k, =
∑  +

1
2

β jk ij ik
i, j,k=1

3

e e∑  + + ,                             (1.13)  ε β ωijk jm i km
i, j,k,m=1

e
3

∑ resε

where  

                                                 θ
τ

ik
ikI

m
= =

I
dV

ik

ρ
τ
∫∫∫

 (i, k =1, 2, 3)                                                       (1.14) 

is the ik- component of the classical  inertia  tensor per unit mass of the continuum region  ; τ
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                                                    β = ik
J
m

ik

τ

 = 
J

dV
ik

ρ
τ
∫∫∫

 (i, k= 1, 2, 3)                                                   (1.15) 

is the ik- component of the classical  centrifugal tensor per unit mass of the continuum  region  τ ; 

                                                                     ε t =
K
m

t

τ

=
1
2

Vc
2                                                                    (1.16) 

is   the   macroscopic  translational  kinetic  energy   per  unit   mass of  the continuum  region  (moving as 

a whole at speed   of the mass  center  of  the  continuum  region  

τ
Vc τ ); 

                                                                 ε =r
K
m

r

τ

 = 
1
2
θ ω ωik i k                                                            (1.17) 

is    the   macroscopic  internal    rotational    kinetic   energy    per   unit   mass  of   the   continuum   region 
τ  (rotating  with the angular velocity  ( )crω ≡ ))(ω),(ω),((ω c3c2c1 rrr  as a  whole); 

                                                                = ε s
K
m

s

τ

 =  
1
2
β jk ij ike e                                                           (1.18)  

is  the  macroscopic  internal  shear kinetic   energy  per  unit mass  of  the continuum   region  (expressing  τ
the  kinetic  energy  of  irreversible  dissipative  shear  motion  related  with the rate of strain  tensor  

)(eij cr ); 

                                                           =  coup
rs,ε

K
m

s,r
coup

τ

 = ε β ωijk jm i kme                                                    (1.19)  

is  the  macroscopic  internal  kinetic  energy   of   the  shear-rotational   coupling   per  unit   mass   (of the  

continuum  region  ), ε = O  is  the  residual  correction. The energies  and  are  τ res )(d 4
τ ε ε εr s s,r

coup, , resε
the Galilean invariants  with  respect  to different  inertial K  coordinate systems as well as the local kinetic  
energy dissipation rate per unit mass =disε ν2 2

ij )(e , where ν  is the molecular viscosity. We have 

( ) ( ) ( ) ( )ε ε ε ετ τ τr
2

s
2

s,r
coup 2

res
4d d d= = = =O O O O, , , τd , when , where  is the earlier  0d →τ d τ

defined diameter of the continuum region .  τ
For a homogeneous continuum region of simple form (sphere or cube) we have  

                                                 = I ik I ikδ ,  J Jjk jk= δ ,                                                           (1.20)  

where ,  are the Kronecker delta-tensors. Formula (1.10) for the macroscopic internal rotational 

kinetic energy  is reduced to the classical expression 

δ ik δ jk

K r

                                                         =K r
2I

2
1 ω ,                                                                       (1.21)  

where =ω . Formula (1.11) for the macroscopic internal shear kinetic energy   is 
reduced to the expression [Simonenko, 2004; 2006]: 

2ω ω ω1
2

2
2

3
2+ + K s

                                                   = K s
1
2

Je eij ij ≡  J
2
1 2

ij )(e ,                                                              (1.22)  

which is proportional to the  local kinetic energy  dissipation rate per unit mass   in an 

incompressible viscous Newtonian continuum, where 

ν=ε 2dis
2

ij )(e
ν  is the molecular viscosity. The  macroscopic 

internal kinetic energy  of  shear-rotational coupling Κ s,r
co up   vanishes  for the homogeneous continuum  

region  of  the form of the sphere or cube. Consequently, the macroscopic kinetic energy K   for the 
homogeneous continuum  region τ  of the shape of sphere or cube is given by following expression 
[Simonenko, 2004; 2006]: 

τ τ
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                                            =K τ 2
1 m τ Vc

2 + 2I
2
1 ω + J

2
1 2

ij )(e  +                                            (1.23) K res

Hence, the macroscopic kinetic energy per unit mass ε k  for the homogeneous continuum  sphere or cube τ  
is expressed as the sum of explicit terms [Simonenko, 2004; 2006]:   

                                            +ε 2
cV

2
1=k 2

1
θ 2ω +

1
2
β 2

ij )(e + resε ,                                            (1.24) 

where  ε t =
1
2

2Vc   is  the  macroscopic  translational  kinetic  energy  per   unit  mass  of    the   continuum  

region ; ; τ θ τ= m/I β = J / mτ ; = ε r

1
2
θ 2ω   is  the  classical   [de  Groot  and  Mazur, 1962; 

Gyarmati, 1970] macroscopic internal rotational kinetic  energy   per   unit   mass   of  the  continuum  region 

; =τ ε s
1
2
β 2

ij )(e   is the  macroscopic  internal   shear  kinetic  energy  per  unit  mass  of the 

homogeneous  continuum sphere or cube τ  [Simonenko, 2004; 2006].  
We have the following expression for the macroscopic internal kinetic energy  of the 

homogeneous continuum  region τ  of the shape of sphere or cube [Simonenko, 2004; 2006]: 
intK

                                                       = intK 2I
2
1 ω  + J

2
1 2

ij )(e  + K .                                                 (1.25) res

The macroscopic internal kinetic energy per unit mass  for the homogeneous continuum  region intε τ  of the 
shape of sphere or cube is given by the sum of explicit terms [Simonenko, 2004; 2006]:   

                                                      =intε 1
2
θ 2ω +

1
2
β 2

ij )(e + resε .                                                      (1.26) 

Compare formula (1.24) with the de Groot and Mazur’s definition (1.1). Expression  (1.24) is reduced 
to de Groot and Mazur’s definition  (1.1)  under condition  

                                                   0eij =  (i, j=1, 2, 3)                                                                  (1.27) 
of local thermodynamic equilibrium. Therefore, we can conclude that the definition (1.1) of the macroscopic 
kinetic energy per unit mass  inkε  classical non-equilibrium thermodynamics  [de Groot and Mazur, 1962; 

Gyarmati, 1970] is based on the assumption e = 0 of local thermodynamic equilibrium [Evans, Hanley and 

Hess, 1984; Simonenko, 2004; 2006].  
ij

The obtained formula (1.13) for ε k  and its particular form (1.24) (obtained for homogeneous 
continuum  regions of spherical and cubical shapes) generalized [Simonenko, 2004; 2006] the classical de 
Groot and Mazur expression (1.1) in classical non-equilibrium thermodynamics [de Groot and Mazur, 1962;  
Gyarmati, 1970] by taking into account the irreversible dissipative shear component of the macroscopic 
continuum  motion related with the rate of strain tensor e . The expression (1.13) for  contains the new 

macroscopic internal shear kinetic energy per unit mass 
ij ε k

ε s , which expresses the kinetic energy of 
irreversible dissipative shear motion, and also the new macroscopic internal kinetic energy of the shear-
rotational coupling per unit mass ,  which expresses the kinetic energy of local coupling between 
irreversible dissipative shear and reversible rigid-like rotational macroscopic continuum  motions. The 
deduced formula (1.13)  for  confirmed [Simonenko, 2004; 2006] the postulate [Evans, Hanley and Hess, 

1984] that the velocity shear (e ) represents an additional energy source in the extended formulation 
[Evans, Hanley and Hess, 1984] of the first law of thermodynamics for non-equilibrium deformed states of 
continuum  motion.  

coup
rs,ε

ε k

ij ≠ 0

The macroscopic internal shear kinetic energy per unit mass (for homogeneous continuum  regions of 
spherical and cubical shapes): 
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                                                                     β=
2
1ε s

2
ij )(e                                                                     (1.28) 

is proportional to the kinetic energy viscous dissipation rate per unit mass:              
                                                                 =sdis,ε ν2 2

ij )(e                                                                    (1.29) 

in an incompressible viscous Newtonian continuum  characterized by the kinematic viscosity . We have 
shown [Simonenko, 2006] that the proportionality 

ν

                                                             ε s  =sdis,ε ν2 2
ij )(e                                                               (1.30) 

is the basis of the established association [Prigogine and Stengers, 1984;  Nicolis and Prigogine, 1989] 
between a structure and an order (and, hence, the associated macroscopic kinetic energy), on the one hand, 
and  irreversible dissipation, on the other hand, for the dissipative structures of turbulence  in viscous 
Newtonian fluids. 

 
 
 
 

1.2. The generalized differential formulation of the first law of 
thermodynamics  (in the Galilean frame of reference) for non-equilibrium 

shear-rotational states of the deformed one-component individual finite continuum region 
(characterized by the symmetric stress tensor ) moving in the Т

non-stationary Newtonian gravitational field 
  
 

Following the works [Simonenko, 2007a; 2007; 2008], we shall present the foundation of the 
generalized differential formulation of the first law of thermodynamics (in the Galilean frame of reference) 
for non-equilibrium shear-rotational states of the deformed finite one-component individual continuum 
region (characterized by the symmetric stress tensor Т ) moving in the non-stationary Newtonian 
gravitational field. We shall consider the deformed finite one-component individual continuum region in 
non-equilibrium shear-rotational states characterized by the following condition: 

                                                    0eij ≠  (i, j=1, 2, 3).                                                                   (1.31)  
Considering the graphical methods in the thermodynamics of fluids [Gibbs, 1873], Gibbs  formulated  the 
first law of thermodynamics for the fluid body (fluid region) as follows (in Gibbs’ designations): 

                                                        dW-dHdε = ,                                                                     (1.32)  
where  is the differential of the internal thermal energy of the fluid  body,  is  the differential change 
of heat  across the boundary of the fluid body related with the thermal molecular conductivity (associated 
with the corresponding external or internal heat fluxes), =  is the differential work produced by 
the considered fluid body on its surroundings (surrounding fluid) under the differential change  of the 
fluid region (of volume )  characterized by the thermodynamic pressure .  

dε dH

dW pdV
dV

V p
Landau’s and Lifshitz’s formulation [Landau and Lifshitz, 1976; p. 62] of the first law of 

thermodynamics for the general thermodynamic system (material  region) is given by the equivalent form (in 
Landau’s and Lifshitz’s designations): 
                                                                    pdV-dQdE = ,                                                           (1.33) 
where   is the differential work produced by the surroundings (surroundings of the 

thermodynamic system) on the thermodynamic system under the differential change dV  of  volume  of 
the thermodynamic system  characterized by the thermodynamic pressure ;  is the differential heat 
transfer (across the boundary of the thermodynamic system) related with the thermal interaction of the 
thermodynamic system  and  the surroundings (surrounding environment), i.е. >0 is the differential 
energy in the form of the added heat to the thermodynamic system  (if the thermodynamic system receives 
the heat from the surroundings) or dQ < 0 is the differential energy in the form of the returned heat (if the 
thermodynamic system returns the heat to the surrounding environment); E  is the energy of the 

pdVdA −=
V

p dQ

dQ
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thermodynamic system, which should contain (as supposed [Landau and Lifshitz,  1976])  the kinetic energy 
of the  macroscopic continuum motion.   

We shall use the differential formulation of the first law of thermodynamics [de Groot and Mazur, 
1962] for the specific volume (of unit mass) of the compressible viscous one-component 
deformed continuum with no chemical reactions:        

1 ρ=ϑ /

                                                   -
dt
dp

dt
dq=

dt
du

ϑ
ϑ

− П v Grad : ,                                          (1.34) 

where  is the specific (per unit mass) internal thermal energy, d/dt  is the total derivative following the 
continuum substance,  is the thermodynamic pressure,  П  is the viscous-stress tensor,  is the 
hydrodynamic velocity of the continuum macro-differential element mass center [de Groot and Mazur, 
1962],  is the differential change of heat across the boundary of the continuum region (of unit mass) 
related with the thermal molecular conductivity described by the heat equation [de Groot and Mazur, 1962]: 

                                                                  

u
p  v

dq

q div
dt
dqρ J−= ,                                                               (1.35) 

where  is  the heat flux [de Groot and  Mazur, 1962]. The viscous-stress tensor  is taken from the 

decomposition of the pressure tensor  [de Groot and  Mazur, 1962]: 
qJ П

P
                                                                ,                                                                          (1.36)  ΠδΡ +p= 
where δ is the Kronecker delta-tensor.  

Considering the Newtonian viscous-stress tensor ≡vP П  of the compressible viscous Newtonian 
continuum with the components [Gyarmati, 1970]: 

                                                 ijП ρ
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ 2ν-δ divη-νρ

3
2 ijvv= eij ,                                      (1.37) 

the differential formulation (1.34) of the first law of thermodynamics (for the continuum region (of unit 
mass) of the compressible viscous Newtonian one-component deformed continuum with no chemical 
reactions) can be rewritten as follows  

                                        ( ) +⎟
⎠
⎞

⎜
⎝
⎛ −+= 2

2  divν
3
2ν

dt
dp-

dt
dq

dt
du vϑ 2

ij )e(2ν ,                           (1.38) 

where =  is the coefficient of the molecular kinematic (first) viscosity,   =  is the coefficient 

of the molecular volume (second) viscosity [Landau and Lifshitz,  1988]. The first and the second terms in 
the right-hand side of relation (1.38) are analogous to the corresponding respective first and the second terms 
in the right-hand side of the classical formulations (1.32) and (1.33). The third term in the right-hand side of 
relation (1.38):    

ν η/ρ 2ν /ρη v

                                                     =cidq , ( ) dtdiv ν
3
2

ρ
η 2ν v ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−                                                        (1.39)  

is related with the “internal” heat induced during the time interval  by viscous-compressible irreversibility 
[Simonenko, 2006].  The fourth term in the right-hand side of relation (1.38):    

dt

                                                                =                                                                  (1.40)  sidq , dt)(e 2 2
ijν

is related with the “internal” heat induced during the time interval dt  by viscous-shear irreversibility 
[Simonenko, 2006]. The differential formulation (1.38) of the first law of thermodynamics (for the 
continuum element of  the compressible viscous Newtonian one-component deformed continuum with no 
chemical reactions) is taken into account (in addition to the classical terms) the viscous-compressible 
irreversibility and viscous-shear irreversibility inside the continuum element of  the  compressible viscous 
Newtonian one-component deformed continuum with no chemical reactions.  

Using the differential formulation (1.34) of the first law of thermodynamics [de Groot and Mazur, 
1962] for the total derivative du/dt (following the liquid substance) of the specific (per unit mass) internal 
thermal energy  of an compressible viscous one-component deformed continuum with no chemical u
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reactions, the heat equation (1.35) [de Groot and Mazur, 1962], the general equation (based on the 
Newtonian second law applied for continuum) of continuum movement  [Gyarmati, 1970]: 

                                                                 gTv + div1=
dt
d

ρ
                                                                (1.41)  

for the deformed continuum characterized by the symmetric stress tensor  =  [Gyarmati, 1970] of 
general form (in particular, with the components [Gyarmati, 1970]:     

Т P−

 ijT 2νδ divη-νρ
3
2p ijv +

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+− v= ρ eij                                         (1.42)  

for the compressible viscous Newtonian one-component continuum) and taking into account the time 
variations of the potential  of the non-stationary gravity field  (characterized by the local gravity 

acceleration  vector 

ψ
=g ψ∇− ) inside of an arbitrary finite macroscopic individual continuum region τ , 

we derived [Simonenko, 2007] the generalized differential formulation (for the Galilean frame of reference) 
of the first law of thermodynamics (for moving rotating deforming compressible heat-conducting stratified 
macroscopic continuum region  subjected to the non-stationary Newtonian gravity): τ

   =)U(Kd τττ π++ ( )( ) ( )∫∫∫∫
∂∂

Ω⋅Ω⋅⋅
τ

q
τ

ddt-ddt nn nJTnv + Vρd
t
ψdt

τ
∫∫∫ ∂

∂
,          (1.43) 

where  
 =δ τ∂,npA ( )( )∫∫

τ∂

Ω⋅⋅ nTnv ddt                                                  (1.44)  

is the differential work done during the infinitesimal time interval dt  by non-potential stress forces 
(pressure, compressible and viscous forces for Newtonian continuum) acting on the boundary surface τ∂  of 
the continuum region  ; τ nΩd  is the differential element (of the boundary surface   of the continuum 
region  ) characterized by the external normal unit vector  (normal to the differential element of the 
continuum boundary surface ); 

τ∂
τ n

∈Ωnd τ∂ Тnt ⋅=  is the stress vector [Gyarmati, 1970], =Т P−  

[Gyarmati, 1970], where   is the pressure tensor characterized (in particular, for the model of the 
compressible viscous Newtonian continuum characterized by the coefficients of kinematic viscosity 

P
ν  and 

the volume viscosity ) by components: vη

                                            ijP νρ
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+ 2-δ divη-νρ

3
2p ijvv= eij ;                                               (1.45)  

                                                    ( )∫∫
τ∂

Ω⋅=δ nnJ d-dtQ q                                                                    (1.46)  

is the differential (infinitesimal) change of heat of  the macroscopic individual continuum region τ  related 
with the thermal molecular conductivity of heat across the boundary τ∂  of the continuum region τ  (more 
precisely,  is the  differential (infinitesimal) amount of energy exchanged across the boundary  Qδ τ∂   of 
the continuum region  as a result of thermal molecular conductivity of heat, J  is the heat flux [de Groot 

and  Mazur, 1962] (across the element of the continuum boundary surface 

τ q

nΩd τ∂ ) describing by the heat 
equation (1.35);   

                                                              τπ ≡ Vψρd∫∫∫
τ

                                                                       (1.47)  

is the macroscopic potential energy (of the macroscopic individual continuum region ) related with the 
non-stationary potential  of the gravity field (characterized by the local gravity acceleration  vector 

);  

τ
ψ

=g ψ∇−

                                                                U τ ≡ dVuρ∫∫∫
τ

                                                                      (1.48)  

is the classical microscopic internal thermal energy of the macroscopic individual continuum region τ ; 
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                                                              = K τ ∫∫∫
τ

ρ d
2

2v V                                                                     (1.49) 

is the instantaneous macroscopic kinetic energy (earlier defined in Subsection 1.1 by expression (1.4)) of the 
macroscopic individual continuum region τ   (bounded by the continuum boundary surface τ∂ ). The 
instantaneous macroscopic kinetic energy  is given by the relation (1.6) [Simonenko, 2004; 2006] for the 
small macroscopic individual continuum region 

K τ

τ . 
The generalized differential formulation (1.43) of the first law of thermodynamics can be rewritten as 

follows: 
                                    ++ ττ dKdU τπd dGδAQ np, ++δ= τ∂                                           (1.50)  

extending the classical [Gibbs, 1873] formulations (1.32) and (1.33):  
                             , (pdV-QdU δ= dUdε ≡ ,  pdVδW −=− )                                              (1.51)  

by taking into account (along with the classical infinitesimal change of heat  and  the classical 

infinitesimal change of the internal energy 

Qδ
≡τdU dU ) the infinitesimal increment of the macroscopic 

kinetic energy , the infinitesimal increment of the gravitational potential energy , the generalized 

infinitesimal  work   done on the continuum region 
τdK τπd

τ∂np,δA τ  by the surroundings of , the infinitesimal 

amount  of energy: 

τ

dG

                                             =dG Vρd
t
ψdt

τ
∫∫∫ ∂

∂
                                                                   (1.52)  

added (or lost) as the result of the Newtonian non-stationary gravitational energy influence on the continuum 
region  during the infinitesimal time interval .       τ dt

The generalized differential formulation (1.43) of the first law of thermodynamics can be rewritten as 
follows [Simonenko, 2007a; 2007; 2008]:  

                           ( )πτττ
τ UK

dt
d

dt
dE

++=  = Vρdψu
2
1

τ

2∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ ++v = 

                               = -( )( )∫∫
∂

Ω⋅⋅
τ

d nTnv ( )∫∫
∂

Ω⋅
τ

q d nnJ + Vρd
t
ψ

τ
∫∫∫ ∂

∂
.                                  (1.53)  

The equivalent generalized differential formulations (1.43), (1.50) and (1.53) of the first law of 
thermodynamics take into account the following factors: 

 1) the classical heat thermal molecular conductivity (across the boundary  of the macroscopic 
continuum region ) related with the classical infinitesimal change of heat 

τ∂
τ Qδ : 

                                         ( )∫∫
τ∂

Ω⋅=δ nnJ d-dtQ q ,                                                                (1.54)  

  2) the classical infinitesimal change of the internal energy  of the macroscopic continuum 
region : 

τdU
τ

                                          ,                                                                       (1.55)  τdU ≡ dVuρd ∫∫∫
τ

 3)  the established [Simonenko, 2007] infinitesimal increment of the macroscopic kinetic energy 
 of the macroscopic continuum region τdK τ : 

                                         = τdK Vd
2
ρd ∫∫∫

τ

2v
,                                                                       (1.56)  

 4) the established [Simonenko, 2007] infinitesimal increment of the gravitational potential energy 
d  of the macroscopic continuum region τπ τ : 
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                                           ,                                                                       (1.57)  Vψρddd τπ ∫∫∫=
τ

 5) the established [Simonenko, 2007] generalized infinitesimal work  done on the 
macroscopic continuum region  by the surroundings of 

τ∂np,δA
τ τ : 

                              =δ τ∂,npA ( )( )∫∫
τ∂

Ω⋅⋅ nTnv ddt ,                                                            (1.58) 

 6) the established [Simonenko, 2007] infinitesimal amount  of energy added (or lost) as the 
result of the Newtonian non-stationary gravitational energy influence on the macroscopic continuum region 

 during the infinitesimal time interval dt : 

dG

τ

                                        =dG Vρd
t
ψdt

τ
∫∫∫ ∂

∂
.                                                                       (1.59) 

The generalized differential formulations (1.43), (1.50) and (1.53) of the first law of thermodynamics  
(given for the Galilean frame of reference) are valid for non-equilibrium shear-rotational states of the 
deformed finite individual continuum region (characterized by the symmetric stress tensor  in the general 
equation (1.41) of continuum movement  [Gyarmati, 1970]) moving in the non-stationary gravitational field. 
The generalized differential formulations (1.43) and (1.50) of the first law of thermodynamics [Simonenko, 
2007] are the subsequent generalizations of the classical formulations  (1.32) and (1.33) of the first law of 
thermodynamics taking into account: 1) the generalized expression (1.44)  for the differential work 

Т

τ∂δ ,npA  

done during the infinitesimal time interval  by non-potential stress forces acting on the boundary surface 
 of the individual continuum region  and 2) the time variations of the potential  of the non-stationary 

gravitational field inside the individual continuum region 

dt
τ∂ τ ψ

τ  due to the deformation of the individual 
continuum region  and due to the external gravitational influence  (of the external gravity field) on the 
individual continuum region  moving in the combined (terrestrial + cosmic) non-stationary gravitational 
field. 

τ
τ

The generalized expression [Simonenko, 2007] for the infinitesimal work  (done during the 

infinitesimal time interval dt  by non-potential pressure and viscous forces acting on the boundary surface 
 of the individual macroscopic continuum region 

τ∂δ ,npA

τ∂ τ ) is given in Subsection 1.3 for the Newtonian 
symmetric stress tensor  Т  characterized by the components (1.42).  
 
 
      

1.3. The generalized differential formulation of the first law of 
thermodynamics  (in the Galilean frame of reference) for non-equilibrium 

shear-rotational states of the deformed finite individual region of the 
compressible viscous Newtonian one-component continuum moving 

in the non-stationary gravitational field 
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There are evidences [Verhoogen, Turner, Weiss, Wahrhaftig, Fyte, 1970] that the rocks of the Earth’s 
crust at protracted loadings may be considered as fluids characterized by the very high viscosity. According 
to the classical viewpoint  [Verhoogen, Turner, Weiss, Wahrhaftig and Fyte, 1970], the local mechanism of 
creation of the earthquakes is related with the release of the accumulated  potential energy of the elastic 
deformation during the sudden local break (i.e.,  the discontinuous shear) of the Earth’s crust (or the sudden 
increase of fluidity in the local region of the Earth’ crust) accompanied by viscous relaxation and generation 
of seismic waves. It was conjectured [Ranguelov, Dimitrova, Gospodinov, Lamykina, 2003] that “more 
punctual and refined methods of the mathematical analysis are obligatory” for “the practical assessment of 
the seismic hazard”. Taking into account the established [Simonenko, 2004] conception of the macroscopic 
internal shear kinetic energy (per unit mass)  related with the rate of medium deformation (i.e., with the 

rate of strain tensor  

sε

=ije
dt

dε ij , where  is the deformation tensor [Sommerfeld, 1949]), we have 

elucidated [Simonenko, 2005] (from the viewpoint of non-equilibrium thermodynamics) the mechanism of 

ijε



generation of seismic waves from the deformed finite zone of the Earth’s crust. The proportionality (1.30) 
takes place also for deformed compressible finite region of the Earth’s crust for sudden rise of fluidity (in a 
local region of the Earth’s crust) related with the local sudden medium deformation in the separate seismic 
zones of the seismic activity. Taking into account the established [Simonenko, 2004] proportionality (1.30), 
we have assumed [Simonenko, 2005]  that the accumulated potential energy of the elastic deformation  
(related with the deformation tensor ) converts  to the macroscopic internal shear kinetic energy  

(related with the rate of strain tensor ) in the seismic zone simultaneously with the damping of   by  

viscous dissipation and radiation of seismic waves during several oscillations. In Section 3 we shall evaluate 
this mechanism on the basis of the generalized differential formulation (1.43) of the first law of 
thermodynamics  in the Galilean frame of reference for non-equilibrium shear-rotational states of the 
deformed finite individual continuum region (characterized by the symmetric stress tensor ) moving in the 
non-stationary gravity field. 

ijε sK

ije sK

Т

Following the works [Simonenko, 2007a; 2007; 2008], we shall present the foundation of the 
generalized differential formulation of the first law of thermodynamics  (in the Galilean frame of reference) 
for non-equilibrium shear-rotational states of the deformed finite individual region of the compressible 
viscous Newtonian one-component continuum moving in the non-stationary gravity field. The generalized 
differential formulation (1.43) of the first law of thermodynamics  (formulated for the Galilean frame of 
reference) is valid for arbitrary symmetric stress tensor , in particular for non-equilibrium shear-rotational 
states of the deformed finite individual region of the compressible viscous Newtonian one-component 
continuum moving in the non-stationary gravity field. The coefficient of molecular kinematic (first, shear) 
viscosity =  and the coefficient of molecular volume (second) viscosity  =  are assumed to 

vary for each time moment t as an arbitrary continuous functions of the Cartesian space (three-dimensional) 
coordinates. 

Т

ν η/ρ 2ν /ρη v

The generalized differential work =δ τ∂,npA ( )( )∫∫
τ∂

Ω⋅⋅ nTnv ddt  (done during the infinitesimal 

time interval  by non-potential pressure and viscous forces acting on the boundary surface dt τ∂  of the 
individual continuum region ) for the Newtonian symmetric stress tensor  Т  (characterized by the 
components (1.42)) is given by three explicit terms [Simonenko, 2007]: 

τ

                                    =δ τ∂,npA scp δAδAδA ++ =                                                     (1.60) 

= ( )∫∫
∂

Ω⋅
τ

dpdt- nnv ( )∫∫
∂

Ω⋅⎟
⎠
⎞

⎜
⎝
⎛ −

τ
v d divηη

3
2dt- nnvv + dt ,  n

τ
αβαβ dΩen v2η∫∫

∂

where                                   

  =pδA ( )∫∫
∂

Ω⋅
τ

dpdt- nnv                                                        (1.61) 

is the differential work of the hydrodynamic pressure forces acting on the boundary surface τ∂  of the 
individual continuum region  (bounded by the continuum boundary surface τ τ∂ ) during the infinitesimal 
time interval dt ; 

                                             =cδA ( )∫∫
∂

Ω⋅⎟
⎠
⎞

⎜
⎝
⎛ −

τ
v d divηη

3
2dt- nnvv                                               (1.62)  

is the differential work (related with the combined effects of the acoustic compressibility, molecular 
kinematic viscosity and molecular volume viscosity) of the acoustic (compressible) pressure forces acting on 
the boundary surface  of the individual continuum region τ∂ τ  (bounded by the continuum boundary surface 

) during the infinitesimal time interval ;   τ∂ dt
                = dt                                              (1.63)  sδA n

τ
αβαβ dΩen v2η∫∫

∂
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is the differential work of the viscous Newtonian forces (related with the combined effect of the velocity 
shear, i.e. the deformation of the continuum region τ , and the molecular kinematic viscosity) acting on the 
boundary surface  of the individual continuum region τ∂ τ  (bounded by the continuum boundary surface 

) during the infinitesimal time interval . τ∂ dt



Along with the equation (1.38) of  the differential formulation of the first law of thermodynamics [de 
Groot and Mazur, 1962] for the total derivative (following the continuum substance) of the internal 
thermal energy per unit mass  of  the one-component deformed continuum with no chemical reactions, the 
thermohydrodynamic theory [de Groot and Mazur, 1962] contains additionally the equations of the mass and 
momentum balances:   

du/dt 
u

                                                                        ” vρ−=
∂
∂ρ div

t
,                                                               (1.64) 

                                        ( ) vvv divGradηη3
1ηpGrad

dt
dρ ν++∆+−= ”.                              (1.65)  

The generalized differential formulation (1.43) of the first law of thermodynamics  (together with the 
generalized differential work  given by the expression (1.60)) is valid for non-equilibrium shear-
rotational states of the deformed finite individual region of the compressible viscous Newtonian one-
component continuum moving in the non-stationary gravity field. The coefficient of molecular kinematic 
(first, shear) viscosity ν =  and the coefficient of molecular volume (second) viscosity  =  are 

assumed to vary for each time moment t as an arbitrary continuous functions of Cartesian space (three-
dimensional) coordinates. 

τ∂δ ,npA

η/ρ 2ν /ρη v

The generalized differential formulation (1.43) of the first law of thermodynamics takes into account 
the dependences of the hydrodynamic pressure on the hydrodynamic vorticity  and on the rate of strain 

tensor  (for compressible viscous Newtonian one-component continuum moving in the non-stationary 

gravity field) by means of the component  (in the expression (1.60) for ) given by the 

expression (1.61).  The presence of the third term  (given by the expression (1.63) and related with the 
combined effect of the molecular kinematic viscosity and the deformation of the continuum region 

vω
ije

pδA τ∂δ ,npA

sδA
τ  defined 

by the rate of strain tensor ) in the expression (1.60) for αβe τ∂δ ,npA  is generalized essentially the classical 
formulations  (1.32) and (1.33) of the first law of thermodynamics by taking into account the differential 
work of the viscous Newtonian forces acting on the boundary continuum surface  of the individual 
continuum region . 

τ∂
τ

The general equation (1.41) of continuum movement [Gyarmati, 1970] for the compressible viscous 
Newtonian one-component continuum (characterized by the coefficient of molecular kinematic viscosity 

=  and the coefficient of molecular volume viscosity  =  considering as the continuous 

functions of Cartesian three-dimensional coordinates) is reduced to the following equation  

ν η/ρ 2ν /ρη v

( ) ( ) ,η-η3
2Graddivη)Grad(divGradηη3

1ηpGrad
dt
dρ νν gvevvv

+−⋅+++∆+−=                             

                                                                                                                                                                    (1.66)  
where  is the internal multiplication of the vector  and the rate of strain tensor  

( ) in accordance with the corresponding definition  [Gyarmati, 1970]. The equation (1.66) generalizes 
the Navier-Stokes equation (1.65) (given for g = 0) by taking into account the dependences of  the coefficient 
of molecular kinematic viscosity ν =  and the coefficient of molecular volume viscosity  =  

on  the space (three-dimensional)  Cartesian coordinates.  

e⋅η)Grad( η)Grad( e

αβe

η/ρ 2ν /ρη v

The relevant example for illustration of the significance of the term  (in the expression (1.60) for 

the differential work ) is related with the thermodynamic consideration [Simonenko, 2007] of the 
processes   of the energy exchange [Dolgikh, 2000] between the oceans and the lithosphere of the Earth. 
According to the expression (1.63) for the term , the energy exchange between the oceans (and the 
atmosphere) and the lithosphere of the Earth is possible only under the presence of the medium acoustic 

compressibility (i.e., 

sδA

τ∂δ ,npA

sδA

0 div ≠v ) and the medium deformations (i.e., 0eαβ ≠ ) in the boundary regions of 
fluid (in the oceans), air (in the atmosphere) and the compressible deformed  lithosphere of the Earth. 
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According to the generalized expression (1.60) for the differential work τ∂δ ,npA , the energy exchange 
between the oceans (and the atmosphere) and the lithosphere of the Earth is impossible for absolutely rigid 

non-deformed ( ) and non-compressible  (0eαβ = 0 div =v ) lithosphere.  

We have the evolution equation for the total mechanical energy )(K ττ π+ of the deformed finite 
individual macroscopic continuum region τ  [Simonenko, 2007a; 2007]: 

                                  ( )πττK
dt
d

+  = dt
d

 Vρdψ
2
1

τ

2∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ +v =       

                = +Vdpdiv
τ
∫∫∫ v ( ) Vddivη-η

3
2

τ

2
v∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ v – ( ) Vρdeν2

τ

2
ij∫∫∫ + 

                                           + + ( )( )∫∫
∂

Ω⋅⋅
τ

d nTnv Vρd
t
ψ

τ
∫∫∫ ∂

∂
                                                     (1.67)  

obtained from the generalized differential formulation (1.43) of the first law of thermodynamics for the 
compressible viscous Newtonian one-component continuum moving in the non-stationary gravity field.  

In the Section 3 we shall use the evolution equation (1.67) of the total mechanical energy to found the 
rotational, shear and the shear-rotational models [Simonenko, 2007a; 2007] of the earthquake macroscopic 
focal region.  

                                
                                                                                                                                        

1.4. Cosmic and terrestrial energy gravitational genesis of the seismotectonic 
(and volcanic) activity of the Earth induced by the combined  cosmic (due to the energy 

gravitational influences of the Sun, the Moon, the planets of the Solar System and our Galaxy) 
non-stationary energy gravitational influences on the individual continuum region τ  

 (of the Earth) and by the non-potential terrestrial stress forces acting on the 
 boundary surface τ∂  of the individual continuum region  τ

  
  

Following the works [Simonenko, 2007a; 2007; 2008], we present the physical mechanisms of the 
energy fluxes to the continuum region τ  related with preparation of earthquakes. The equivalent generalized 
differential formulations (1.43) and (1.53) of the first law of thermodynamics show that the non-stationary 
gravitational potential  gives the following gravitational energy power   ψ

                                                     =)τ(Wgr Vρd
t
ψ

τ
∫∫∫ ∂

∂
=

dt
dG

                                                          (1.68)  

associated with the gravitational energy power of the total (external and internal) non-stationary gravity 
fields. According to the equivalent generalized differential formulations (1.43) and (1.53) of the first law of 
thermodynamics and to the evolution  equation (1.67) for the total mechanical energy of the 
deformed finite individual macroscopic continuum region 

)(K ττ π+
τ , the energy power of the non-stationary 

gravitational field may produce the fractures in the continuum region τ . We shall consider this aspect in 
Section 3.  

The generalized differential formulation (1.53) of the first law of thermodynamics and the expression 
(1.68) for the gravitational energy power   show that the local time increase of the potential  of 

the gravitational field inside the continuum region 

)τ(Wgr ψ
τ  ( 0tψ/ >∂∂ ) is related with the supply of the 

gravitational energy into the continuum region τ . According to the generalized differential formulation 
(1.53) and to the evolution equation (1.67), the total energy )U(K τττ π++  of the continuum region τ  

and the total mechanical energy  of the continuum region )(K ττ π+ τ  are increased if  .  0tψ/ >∂∂
According to the generalized differential formulation (1.53) of the first law of thermodynamics and 

to the evolution equation (1.67), the gravitational energy supply into the continuum region  may induce the τ
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formation of fractures in the continuum region τ  related with the production of earthquake. This conclusion 
corresponds to the conception [Abramov, 1997; p. 60] that the anomalous variations of the gravity field on 
the background of the Moon-Sun induced variations go in front of earthquakes. The established first stage 
[Abramov, 1997; p. 60] of the anomalous variations of the gravity field related with the time increase of the 
gravity field corresponds to the gravitational energy supply into the continuum region τ  before the 
earthquake. The generalized differential formulation (1.53) of the first law of thermodynamics gives also the 
theoretical foundation of the detected non-relativistic classical “gravitational” waves [Korochentsev, 2009] 
(the propagating disturbances of the gravitational field of the Earth) from the moving focal regions of 
earthquakes. The theoretical foundation of the non-relativistic classical “gravitational” waves is based on the 
fact that the last term of the generalized differential formulation (1.53) can be rewritten as 

                     =)τ(Wgr ,d)(Vρd
t
ψ

ττ
ng nJ Ω⋅=

∂
∂

∫∫∫∫∫
∂ t

ψρdiv
∂
∂

=gJ ,                                (1.68a) 

where  is the energy flux (across the boundary gJ τ∂  of the continuum region ) of the gravitational 
energy related with the change of the total energy of the continuum region 

τ
τ .  

According to the generalized formulation (1.53) of the first law of thermodynamics and to the 
evolution equation (1.67), the supply of energy into the continuum region τ  is related with the work:  

                                                                                                           (1.69) =τ∂,npA ( )( )∫ ∫∫
∂

Ω⋅⋅
t

t τ0

ddt nTnv

done by non-potential stress forces (pressure, compressible and viscous forces for Newtonian continuum) 
acting on the boundary surface  of the continuum region τ∂ τ  during the time interval ( ). 0t-t

The considered mechanisms of the energy supply to the Earth’s macroscopic continuum region τ  
should result to the irreversible process of the splits formation in the rocks related with the generation of the 
high-frequency acoustic waves from the focal continuum region τ  before the earthquake. Taking this into 
account, the sum  in the expression (1.60) may be interpreted [Landau and Lifshitz, 1988; p. 
78] as the energy flux (related with the compressible and viscous forces acting on the boundary surface 

sc δAδA +
τ∂  

of the continuum region )  [Simonenko, 2008, 2009, 2010]: τ
                                                                    =cvis,δF sc δAδA +                                                             (1.70) 
directed across the boundary  of the continuum region τ∂ τ . The considered mechanisms of the energy 
supply to the Earth’s macroscopic continuum region τ  is related with the experimentally detected [Dolgikh 
et al., 2007] significant increase of the energy flux   of the geo-acoustic energy from the focal region 

 before the earthquake.  
cvis,δF

τ
 

1.5.  Cosmic energy gravitational genesis of  
the global volcanic and climate variability induced by the 

 cosmic non-stationary energy gravitational influences on the Earth  
 

Using the evolution equation (1.67) for the total mechanical energy ττ πK +  (of the deformed finite 
individual macroscopic continuum region τ ) and the generalized differential formulation (1.53) of the first 
law of thermodynamics, we derived  the evolution equation for the internal energy  of the macroscopic 
continuum region  [Simonenko, 2007, 2008]: 

τU
τ

τU
dt
d

 =  –  +  –( )∫∫
∂

Ω⋅
τ

q d nnJ ( ) Vρdeν2
τ

2
ij∫∫∫ ( ) Vddivη-η

3
2

τ

2
v∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ v – .      (1.71) Vdpdiv

τ
∫∫∫ v

If the period of variations of the potential of the external cosmic non-stationary gravitational field (of the 
Sun, the Moon, the planets of the Solar System and our Galaxy  influencing on the  continuum region τ  of 

the Earth ) is equal to ( ) ( )  then the same time periodicity ( ) ( )  will 3τ egT τ energyT≡ τ egT τ energyT≡ τ

characterize the periodic variations of the rate of strain  tensor  and the divergence  of the velocity ije vdiv
vector  of  the continuum motion  inside of the  subsystem v τ  of the Earth  . Taking into account that 3τ
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the quadratic functions   and  (  have the  time period ( )2ije )2divv egT
2
1

( ) of temporal variations, we τ

obtained [Simonenko, 2007, 2008],  according to the  evolution equation  (1.71), the  time periodicity  
)τ(Tendog   

                                                             )τ(T
2
1)τ(T egendog =                                                                (1.72) 

of variations of the internal energy  of the macroscopic continuum region   as a result of the τU τ
irreversible dissipation of the macroscopic kinetic energy determined by the second and the third terms in the 
right-hand  side of the evolution equation  (1.71).    
                                                                          

 

1.6. Thermodynamic equilibrium of the closed thermohydrogravidynamic system 

 
1.6.1. The equilibrium state of the closed thermodynamic 

system in classical statistical physics 
 

 Following the “Thermohydrogravidynamics of the Solar System” [Simonenko, 2007] and using the 
established [Simonenko, 2004; 2006] generalized expression (1.6) for the total macroscopic kinetic energy 

)(K τ α  of each subsystem  α, in Subsection 1.6 we present the foundation of the conditions of the 
thermodynamic equilibrium for the closed thermohydrogravidynamic system. Landau and Lifshitz [Landau 
and Lifshitz, 1976] considered the problem of finding of the maximal total  entropy of the thermodynamic 
system  consisting of N subsystems not taking into account the internal structure of each subsystem  
(considering the subsystems as the material points). Considering the entropy  of each subsystem αS α  as a 
function of the internal energy, Landau and Lifshitz [Landau and Lifshitz, 1976; p. 52] postulated the 
following expression for the total entropy  of the closed thermodynamic system (taking into account the 
Galilean principle of relativity): 

totS

                                                    ∑
=α α

α
α ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

N

1

2

tot ,
m2

1ESS P                                                            (1.73)  

where  is the total energy of each subsystem αE α ,  is the macroscopic kinetic energy of  the 

translational motion of each subsystem ,  is the momentum  of each subsystem ,   is the mass of 
each subsystem ,  is the universal function.  Landau and Lifshitz considered the problem of finding of 
the maximal total entropy  of the thermodynamic system under imposed conservation laws of the total 

momentum   and total angular momentum  : 

)m2/( ααP

α αP α αm
α S

totS

totP totM

                                                          ,                                                    (1.74)  ∑
=α

α ==
N

1
1tot constPP

                                                   .                                             (1.75)  [ ]∑
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αα ==×
N

1
2tot constMPr

 Following to the Lagrang’s method and considering  the uncertain vectors   and , Landau and 
Lifshitz obtained the condition of the maximum of  by equating to zero the derivative of the Lagrang’s 
function                                            

a b
totS

                                                                                        (1.76)  [{∑
=α

αααα ×⋅+⋅+=
N

1
SL PrbPa ]}



on the momentums   of each subsystem αP α . Taking into account the thermodynamic definition of 

temperature, the derivative of  on the momentum   is presented in the following form [Landau and 
Lifshitz, 1976]:  

αS αP
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where  is the macroscopic translational speed of the subsystem αV α . 

 The   derivative   of  the scalar   product  a α⋅P  on  the momentum   is presented in the following  αP
form [Landau and Lifshitz, 1976]:   

                                                              aa =⋅
∂
∂

α
α

P
P

.                                                               (1.78)  

 The derivative of the scalar product [ ]αα ×⋅ Prb  on the momentum  is presented in the 
following form [Landau and Lifshitz, 1976]:  

αP

                                                    [ ] [ ααα
α

×=×⋅
∂
∂ rbPrb
P

].                                                 (1.79)  

Consequently, the derivative of the Lagrang’s function  on the momentum  is given by the following 
expression [Landau and Lifshitz, 1976]:                                            

αP

                                                     [ α
α

α

×++−=
∂
∂ rbV
P

a
T

L ],                                                 (1.80)  

from which we have  (under condition 0L
=

∂
∂

αP
) the following expression [Landau and Lifshitz, 1976]: 

                                                            [ ]αα ×+= rΩuV ,                                                         (1.81)  

where   

                                                               ,Ta=u bΩ T= .                                                    (1.82)  

 Landau and Lifshitz concluded from expression (1.81) that the translational macroscopic motion and 
the rigid-like rotation as a whole characterize the state of the thermodynamic equilibrium [Landau and 
Lifshitz, 1976]. Landau and Lifshitz considered the imposed conservation laws (1.74) and (1.75) of the total 

momentum  and the total angular momentum  not taking into account the thermohydrogravidynamic 
structure of each subsystem 

totP
α  (considered as a material point) and the gravity field.  In this Section we shall 

consider further the thermohydrogravidynamic structure of each subsystem α   considering as a finite 
continuum region   subjected to the gravitational field.  ατ
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1.6.2. The conservation law of the total energy for the closed 

thermohydrogravidynamic system  in the frame of continuum model τ
 

 Prigogine and Stengers [Prigogine and Stengers, 1984] considered the differential dE (during the time 
interval dt) of the total energy Е of the unclosed thermodynamic system in the following form: 

                                                           EdEddE ei += .                                                                  (1.83)  

 The term Ed  related with the internal production of energy is considered equal to zero as a 
consequence of the conservation law [Prigogine and Stengers, 1984].  Consequently, the total increment of 
energy dE is related with the term  describing the energy exchange with the external surroundings of the 
considered thermodynamic system [Prigogine and Stengers, 1984].   

i

Ede

 We  postulate the conservation law for the total  energy  : τE

                                                  =τdE )U(Kd τττ π++ =0,                                                     (1.84)  

or 

                                              )U(K τττ π++ = τE const=                                                    (1.85)  

for the closed thermodynamic system  subjected to the self-induced own gravitational field.  Considering 
the problem of finding of the maximal entropy of the thermodynamic system, we shall  postulate the 
conservation of the total   momentum,  the total angular momentum and the total energy of the 
thermodynamic system considering in the frame of the model of continuum subjected to the self-induced 
own gravitational field.  

τ

The expression (1.85) can be rewritten for closed system in the following form: 

                     =)U(K τττ π++ ∫∫∫ =⎟
⎠
⎞

⎜
⎝
⎛ ++

τ

2 ρdVψuρ
2
1 v τE const= ,                        (1.86)  

where  is the classical internal thermal energy of molecular chaos and the short-range 

intermolecular electromagnetic interactions [de Groot and Mazur, 1962; Sommerfeld, 1954], 

 is the potential energy of the thermodynamic system τ ,  is the potential of 

gravitational forces in the  point characterized by the position-vector r ,  is the mass concentrated  in 
volume  of the three-dimensional Euclidean space. We consider the classical Newtonian gravitation and 
assume that the potential   do not depend on the speed of the material bodies containing in the  
thermodynamic system .  

U τ ≡ dVuρ∫∫∫
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1.6.3. Statistical properties of  thermodynamically equilibrium 

subsystem in  classical  statistical physics 

  

 According to Landau and Lifshitz  [Landau and Lifshitz, 1976], the statistical  properties of each  
thermodynamic subsystem α  is  defined by its energy , the momentum  and the angular 
momentum     considering as a functions of  coordinates 

),(Eα qp ),(α qpP
),(α qpM ),...,,( N21 qqqq ≡  and  momentums 

 of  all  N particles constituting the thermodynamic  subsystem α .  ),...,,( N21 pppp ≡

 The unique additive  combination of this values is the linear combination [Landau and Lifshitz, 1976] 
for the distribution  function  of each  thermodynamic  subsystem aρ α : 

                           ( ) ( ) ( )qpMδqppγqp ,,,βElnρ aaaaa ⋅+⋅++α=                               (1.87)  

characterized by constant identical factors δγ,β,,aα  for each thermodynamic subsystem  of the closed 
thermodynamic system.  Taking into account the existence of only seven independent additive integrals of 
movement: the energy, three components of the momentum vector and  three component of the angular  
momentum vector,  Landau and Lifshitz  [Landau and Lifshitz, 1976] concluded that the seven independent 
constants   can, obviously, be defined using the  seven constants  of additive   integrals of movement 
for all closed  thermodynamic system. 

α

δγ,β,

  Thus, the values of  additive integrals of movement (the energy, three components of the momentum 
vector and  three component of the angular momentum vector) are  completely define the  statistical  
properties of the  closed thermodynamic system [Landau and Lifshitz, 1976] including the average values of 
the physical values. Using the stated reasons, Landau and Lifshitz  [Landau and Lifshitz, 1976] considered 
the distribution  function  for the closed thermodynamic system: ρ
 

                               ( ) ( ) ( )ooo δδEEδconstρ MMPP −−−= ,                                         (1.88)  

for the micro-canonical distribution  corresponding  to the  constant  values of the energy , the impulse 
, momentum and the angular  momentum  of the  thermodynamic system. Taking into account that 

the impulse and the angular  momentum  are related with  the movement as a whole (uniform translational  
movement and uniform rotation (for system in the state of  thermodynamic equilibrium),  Landau and 
Lifshitz  [Landau and Lifshitz, 1976]  concluded that statistical condition of the system  depends  only on the 
energy. This statement is valid for the closed thermodynamic system considered in the state of  
thermodynamic (statistical) equilibrium. We have the micro-canonical distribution for the closed 
thermodynamic system [Gibbs, 1928; Landau and Lifshitz, 1976] considered in the state of thermodynamic 
(statistical) equilibrium:                             

oE

oP oM

                                                         ( )oEEδconstρ −=                                                          (1.89)  

corresponding to the constant  value of energy  of the closed thermodynamic system.  oE

 Thus, the total energy defines the statistical  properties of the closed thermodynamic system 
considered in the state of  thermodynamic (statistical) equilibrium. We see that the reasons of the classical 
statistical physics   testify in favour of using of the energy for consideration of the problem of 
thermodynamic equilibrium for the closed thermodynamic system. 

 In Subsection 1.6.6 we shall consider  the angular momentum  for each subsystem  defined by the 
following form: 

α

                                                                 ,                                                                  (1.90)  [∑
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where index β   characterizes the  small macro-differential parts of the subsystem α . We shall conclude  that 
the  angular velocity of  rotation  of the subsystem αω α  as a  whole and the classical inertia tensor  (  

(defining the classical macroscopic internal rotational kinetic energy ) define the sum (1.90) also for the 
state of thermodynamic equilibrium ( ) of the subsystem 

αij )Ι

rK
0eij = α . We shall  see  that the sum (1.90) 

depends on the classical  centrifugal  tensor  of the subsystem αij )(J α   and on the rate of strain tensor  

(  (defining the established [Simonenko, 2004]  macroscopic non-equilibrium kinetic energies) if  the  

subsystem α  is far ( ) from the state of  thermodynamic equilibrium (
α)eij

0eij ≠ 0eij = ).  

 

 

1.6.4. Entropy of the thermodynamic system in classical statistical 

physics and the Galilean principle of relativity 

 

 Taking into account that the entropy is the Galilean invariant [Landau and Lifshitz, 1976], the entropy  
 of the thermodynamic subsystem  (designated also by αS ατ α ) is the universal function S  of the internal 

energy 
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where   is the total energy of the subsystem αE α. The internal energy  of the  subsystem   contains 

the all possible and  admissible energies (except the kinetic energy of the translational movement of the mass 
center of the subsystem α). The internal  energy  of each  subsystem 

αint,E α

αint,E α contains the energies , 

, , , ,   corresponding to the subsystem  

rK

sK соuр
rsK , resK U π α. 

 Following to Landau and Lifshitz  [Landau and Lifshitz, 1976], we postulate the entropy  of the 
total thermodynamic system  by the following expression: 
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 From definition (1.93) we see that the entropy   is the total value describing the thermodynamic 
system.  

totS

Let us find the maximum  of  function   considered as a function of  the  following variables: totS

                                                       , , , ,                                                          (1.94)  
(1)

rK
(2)

sK
(3)

сouр
rs,K

(4)

U
(5)

π

for each  subsystem )N,...,1( =αα , i.е. let us find the maximum of function   depending on 5N 
variables, where  N is the number of considered subsystems. Since each subsystem  is defined also by the 
position-vector  of the mass center  (С, 

totS
α

α,cr α), then we add also 3N variables not considering the 
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configuration of the subsystem   defined by the boundary surface α ατ∂ .  

 Though the entropy of each subsystem α, according to  definition (1.92), do  not depends on the 
momentum  of this subsystem α, nevertheless, the total  entropy   depends on the  set of  

momentums  .  
α,cP totS

α,cP N)1,...,(α =

 We shall find the maximum of  under imposed restrictions (on the closed thermodynamic system) 
characterized by the conservation laws of the total  energy and the total angular momentum [Simonenko, 
2007]:   

totS
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presented for the coordinate system  related with the mass center  of the thermodynamic system.  sysK ′ sysC

 

 

 

1.6.5. The condition of the  thermodynamic equilibrium  for  the closed 
thermohydrogravidynamic system considered in the coordinate system   of the mass sysK ′

  center   of the  thermohydrogravidynamic system under imposed conservation sysC

laws of the total  energy and the total angular momentum 

 

 We divide mentally the thermohydrogravidynamic system into sufficiently small but finite 
macroscopic subsystems   )N,...,1( =αα . We define by symbol  the speed of the mass center of  

each subsystem  relative to inertial  coordinate system 
αc,V

sysK ′  related with the mass center  of the  

thermohydrogravidynamic system. We  assume that the subsystems 
sysC

)N,...,1( =αα  are not in the states of 
thermodynamic equilibrium at the initial time moment.  We postulate the conservation laws (1.95) and (1.96) 
for the total energy  and the total angular momentum   obtained in the inertial coordinate system 

. 
totE totM

sysK ′

 In accordance with the second law of thermodynamics  [Prigogine and Stengers, 1986; Nicolis and 
Prigogine, 1990], we shall find  the  maximum of entropy  [Simonenko, 2007]: totS

                                               
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −∑

=

N

1α

2
αc,αα m

2
1ESmax V                                                   (1.97)  

under imposed  conditions (1.95) and (1.96),  according to which  the total  energy   of the  subsystem αE α  

and the total angular momentum   of the subsystem αM α  are defined by the following expressions 
[Simonenko, 2007]: 

                                                ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ ++=≡

α

α

τ

2
ατ dV,ψρuρρ

2
1EE v                                    (1.98)  
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                                                     [ ]∫∫∫ ×=≡
α

α

τ
ατ dVρvrMM .                                             (1.99)  

 The potential ψ  of the gravitational field in non-relativistic approximation (Newtonian gravity in 

Euclidean space) for mass distribution in the thermohydrogravidynamic system   

(representing the set of  subsystem ) is given by classical expression  [Landau and Lifshitz, 1988, Theory 
of Field; p. 382]: 

∑
= =

≡=
N

1α
α

N

1αα τUττ

ατ

                                                              ψ ∫∫∫−=
τ R
ρdVγ ,                                                           (1.100)  

where R is the  distance from the  point of  space (in which the  potential  is calculated) to the element of 
mass  , 

ψ
dVρ γ  is the gravitational constant.  

 

 

1.6.6. Angular momentum of the subsystem ατ  (macroscopic continuum region ατ ) 

for the non-equilibrium  thermodynamic  state 

 

 Let us calculate the angular momentum (1.99) of the macroscopic  subsystem  (continuum region 

).  Landau and Lifshitz  [Landau and Lifshitz, 1976; p. 53] considered the expression  [  instead 
of the integral  (1.99). It means the consideration of the finite macroscopic thermohydrogravidynamic 
systems as the material point that is inconsistent with the considered continuum  approach. Let  us calculate 
the  integral (1.99) for arbitrary distributions of density 

ατ

ατ ]αα Pr ×

ρ  and the continuum velocity  in the  continuum 
region .  

v
ατ

 For the analysis of the relative continuum motion in the physical space in the vicinity of the position-

vector  of the mass centre  (С, )  of the continuum region αc,r ≡αС α ατ  we have [Simonenko, 2004; 2005; 

2006] the Taylor series expansion of the hydrodynamic velocity vector  for each time moment : v ( )r t

     ( ) ( ) ( )[ ] ( )∑ ∑
= =

+
∂∂

∂
++δ×+=δ+

3

1ji,

3

1kj,i,
resikj

ki

i
2

ijαc,ijαc,αc,αc, δrδr
XX

v
2
1δre vµµrrrωrvrrv .                         

                                                                                                                                                                  (1.101)  

 Integral (1.99) is calculated by Saffman [Saffman, 1992] by neglecting the square-law and subsequent 

terms in relation (1.101).  Saffman  [Saffman, 1992] calculated the angular momentum   (characterized 

by the i-component   of  the vector )  of the continuum region 

c
τα

M

( )ic
τα

M c
τα

M
ατ  relative to the mass  center 

  (defined by the position-vector  in the coordinate  system К)  in the following form: αС αc,r

                                       ( ) ( )
(2)

jijkkij
(1)

jkijk
c
τ ,ωJJδ

2
1Jeεi

α
−+= llM                                   (1.102)  

where    is the jl-component of the  centrifugal tensor written  (in approximation ljJ const=ρ ) in the 

following form [Saffman, 1992]: 
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                                                           .                                                     (1.103)  ∫∫∫ρ=
ατ

jiij dVδxδxJ

 The first term (1) in expression (1.102) is reduced to zero if the continuum region  has the spherical 
symmetry [Saffman, 1992], when the continuum region 

ατ

ατ  has the center of symmetry as for case of 
homogeneous cube or sphere.   

 The expression  (1.102) shows that the angular momentum  of  deformed   continuum region 
c
τα

M
ατ  

depends on the rate of strain tensor  in the point  of the mass  center  defined by the position-vector 

. Formula  (1.102) generalizes the classical definition [de Groot and Mazur, 1962] of the angular 

momentum of the fluid  region (of mass ) in non-equilibrium  thermodynamics: 

lke αС

αc,r
M τm

                                                                 ωM
Θ=

τm                                                                  (1.104)  

for non-equilibrium states of continuum  motion.  Taking into account the expression (1.102), we obtained  
from  expression (1.99) the following relation [Simonenko, 2007]: 

                      

( )[ ]

[ ] ( )∑ ∑
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−++×=
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,ωJJδ
2
1Jeε

dVρdVρδ

α

α

α

α

µµPr

MvrvrrM

ll

ατ
                 (1.105)                      

where the vector  is  described by  two  components given by expression (1.102). We see that 

expression (1.105) for the angular momentum   of a small macroscopic  continuum region  contains 

t o  additional terms [Saffman, 1992]  along with the classical [Landau and Lifshitz, 1976] term  

c
ταM

ατ
M ατ

w
[ ]

αταc, Pr × .   

 In expression (1.105) the first additional term characterized by components  is 
related with the non-equilibrium shear local continuum velocity field. In expression (1.105) the second 

additional  term characterized by components  

( ) ll jkijkis Jeε=M

( ) ( ) jijkkijir ωJJδ
2
1

−=M  is related with the 

equilibrium rotational local continuum velocity field. In expression (1.105)  these two additional terms do  
not depend  on the momentum  of the subsystem

ατ
P α  (continuum region  ατ ): 

                                         = ,                                         (1.106)  ( )∑
=

=
3

1i
iiss µMM ∑
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jkijk Jeε ll iµ

                                    =( )∑
=

=
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1i
iirr µMM ( ) iµ∑

=

−
3

1i
jijkkij ωJJδ

2
1

.                               (1.107)  

 Formula (1.105) generalizes the classical expression  [ ]
αταc, Pr ×  in the classical statistical physics 

[Landau and Lifshitz, 1976]. The importance of the shear component   (of the total macroscopic  internal sM
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angular momentum  ) is obvious for the continuum region   characterized by 

arbitrary non-symmetric (relative to the mass center) form. 

( )∑
=

=
3

1i
i

c
τ

c
τ iM

αα
µM ατ

 
 
 
 

1.6.7. The conditions of the thermodynamic equilibrium for the closed 
thermohydrogravidynamic system  (consisting of  N thermohydrogravidynamic 

subsystems) considering in the  inertial  coordinate system   related sysK ′

with the mass center  of the thermohydrogravidynamic system sysC
 

 The expression (1.98) can be  rewritten in the following  form [Simonenko, 2007]: 

                                    Eα=
2
1

mαV +(K )2
αc, s α+(K )r α+(K coup )rs, α+Uα+ π α= 

                                          =
α

2
τ

2m
α

P
+(K )s α+(K )r α+(K coup )rs, α+Uα+ π α.                                                          (1.108) 

As a result,  expression (1.95) can be  rewritten in the following  form:  

                                 ∑
=

N

1α α

2
τ

2m
α

P
+(K )s α+(K )r α+(K )coup

rs, α+Uα+π α=  .                                (1.109)  totE

 Taking into account the expression (1.105), the conservation law of the  total angular momentum   
(1.96) can be  rewritten in the following  form [Simonenko, 2007]: 

                                                 ([r∑
=

N

1α
αc, ×P ]+M )=M ,                                                   (1.110)  

ατ
c
τα tot

where the vector M c
τ  is given by the expression (1.102) for each component  . To find  the 

maximum  (1.97) of the total entropy  S
α

( )ic
τα

M

tot  (given by the expression (1.93)): 

                                               mах{ S(E∑
=

N

1α
α -

2
1

mα V )}, 2
αc,

we follow the Lagrang’s method and consider the uncertain factors a  (vector) and βТ (scalar value). The  
Lagrang’s function has the following form [Simonenko, 2007] : 

                                 L = {S(E∑
=

N

1α
α-

2
1

mαV )+a ⋅([r2
αc, αc, ×P ]+M )+

ατ
c
τα    

                                                      +β [T
α

2
τ

2m
α

P
+(K )s α+(K )r α+(K )coup

rs, α+Uα+π α]},                                  (1.111)  

where  the point (⋅) after the  vector    designates the scalar product  of the corresponding vectors, S is 
some universal function of thermodynamic state.   

a

 We find the first (from the set of conditions) condition of the maximum of  the Lagrang’s function 
(1.111) by equating to zero the  derivative of  L on momentums  P

ατ  (for  α = 1, 2,…….., N): 

                       {∑
=

N

1i ατ

S
P∂
∂

( -iE
2
1

m α V )+2
ic,

ατ
∂
∂
P

( a ⋅ ([r ic, ×  P ]+M
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                             +
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P∂
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βТ(
i

2
τ

2m
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P
+(K )s i +(K ) i +(K ) i +U + }=0,                       (1.112)  r
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rs, i

π
i
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where  the vector  and the scalar value  βa Т  will be find.  
 Using the equality: 

                                       
ατ

P∂
∂

S(E -i
i

τ

2m
i

P
)=

α

τ

α mT
1 α

P
− =

αT
1

− V ,                                     (1.113)  αc,

and also the identity: 

                                               
ατ

P∂
∂

( ⋅[ra αc, ×P ]=[a
ατ

×r ],                                                (1.114)  αc,

we get the necessary condition of maximum of the total entropy  S : tot

                                                   
α

αc,

T
V +[a ×r ]+βαc, Т

α

τ

m
α

P
=0,                                                      (1.115)  

where  r  is the position-vector of the mass  center of the thermodynamic  subsystem τ . We used the 
identity  

αc, α

                                                             
( )

α

α

αα
τ

τ

ττ 2P
P

PP
=

∂

⋅∂
                                                      (1.116)  

for deduction of expression   (1.115).  We obtained from expression (1.115) the following relation 
[Simonenko, 2007] : 

                                                   
α

αc,

T
V +[  a ×r ]+βαc, Т αc,V =0.  

As a result, we obtained the following relation [Simonenko, 2007]: 

                                                     (αc,V
αT

1
-βТ)= [a  ×r ].                                              αc,

 Finally, we obtained the condition of the thermodynamic equilibrium [Simonenko, 2007]: 

                                                     =αc,V

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− T

α
β

T
1

1
[a ×r ].                                                 (1.117)  αc,

 Since we  consider the  subsystems in the  inertial  coordinate system  (related with the mass  

center  of the closed  thermohydrogravidynamic system) then the  speed of the translational movement 

of each subsystem τ  is  equally to 0 as it is obvious from the expression (1.117). If T

sysK ′

sysC

α α=const then the 
condition (1.117) do not means that each subsystem τα rotates as a whole (as a rigid body) with the angular 

velocity   a /(
αT

1
 - βТ)  in the equilibrium state. Expression  (1.117)  shows only that the mass centers of all 

subsystems α (in the equilibrium state characterized by maximum of entropy S ) rotate as a rigid-like 
body. 

tot

 In Subsection 1.6.8.2 we shall show that the equilibrium state of the closed  thermohydrogravidynamic 
system is characterized by the following conditions for each  subsystem τα: 
 

                                                        ( ) 0K αs = , .                                               (1.118)  0)(Kcoup
rs, =α
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1.6.8. The conditions of the thermodynamic equilibrium  of the closed 
thermohydrogravidynamic system consisting of  N  thermohydrogravidynamic 

subsystem considered in the inertial coordinate system  K  
 

1.6.8.1. The condition of the thermodynamic equilibrium (of the 
closed thermohydrogravidynamic system)  describing the relative 

movements of the mass centers of all subsystems 
 

 Now we consider the problem of finding of the maximal entropy S  of the 

thermohydrogravidynamic system  in the arbitrary inertial  coordinate system 
tot

K  not connected  with the 
mass center  of the thermohydrogravidynamic system. We add  (in addition to the postulated 
conservation laws (1.109) and (1.110)) the additional conservation law of the total momentum of the  
thermohydrogravidynamic system. The Lagrang’s function (1.111) with the additional term   [Landau 
and Lifshitz, 1976] (characterized by the  uncertain vector с) can be rewritten [Simonenko, 2007]: 

sysC

ατPс⋅

                                   L = {S(E∑
=
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1α
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2
1

mαV )+ ⋅([r2
αc, a αc, ×P ]+M )+
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c
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                                                   +β T [
α

2
τ

2m
α

P
+(K s )α+(K )r α+(K coup )rs, α+Uα+π α]+ ατPс ⋅ }.                      (1.119)  

As a  result, the condition (1.115) can be rewritten in the following form [Simonenko, 2007]: 

                                                       
α

αc,

T
V +с + [a  ×r ] + βαc, Т αc,V =0,                                         (1.120)  

which gives the expression for the speed  of the mass center  (С, α)  of the subsystem ταc,V α  [Simonenko, 

2007]: 

                                   =αc,V
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α

β
T
1
с

.                                   (1.121)  

 Using the expression (1.121), we obtained [Simonenko, 2007] that the mass  centers of  subsystem  
can move as a  whole in a translational motion and a rigid-like rotation only for Consequently, 
the constant temperature   is the necessary but the not sufficient condition of the thermodynamic 
equilibrium of the thermohydrogravidynamic system. If  

.constTα =
constTα =

constTTα ==  then the  vector value (in formula 
(1.121))                                                           

                                                            Vc
⎟
⎠
⎞

⎜
⎝
⎛ −

=

TβT
1
с

                                                            (1.122)  

can be considered as the  speed  of the mass center  of the closed thermohydrogravidynamic system  

 containing the set of  subsystem 

Vc sysC

∑
= =

≡=
N

1α
α

N

1αα τUττ
ατ .  
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1.6.8.2. The conditions of the thermodynamic equilibrium of the closed 

thermohydrogravidynamic system relative to the macroscopic 
non-equilibrium kinetic energies of the subsystems τα

 
 

 Let us find  the conditions of  maximal entropy S relative to the  macroscopic internal shear  kinetic 
energies  (К S )  (for  α = 1, 2,.., N) under conservation laws for the total momentum, the total angular 
momentum and the total energy of the closed thermohydrogravidynamic system. Considering the entropy 
S  of the closed thermohydrogravidynamic system s as function of the macroscopic internal shear  kinetic 
energies  (К ) α   (for  α = 1, 2,.., N) and by equating to zero the derivative of the Lagrang’s function L 
(given by expression (1.119)) on (K S ) α , we obtained the necessary condition for the maximum of the 

entropy S  [Simonenko, 2007]:  
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We obtained the relation [Simonenko, 2007]:  
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by using the  postulated relation   

                                                         
( )
( ) αα

2
τα

α
2
τα

T
1

/2mE
/2mES

α

α =
−∂

−∂

P
P

                                               (1.124)  

for the temperature T  in the analogous way as it was early implicitly postulated  by Landau and Lifshitz 
[Landau and Lifshitz, 1976] in deduction of the condition (1.77). Since the momentums  and the internal 

angular momentums М  do not depend explicitly from  

α

ατP
с
τα ( )αsK  then we obtained from the condition 

(1.123) the following relation [Simonenko, 2007]: 

                                                            0β
T
1

T
α

=+ . 

Consequently, we have for any subsystem  the following relation [Simonenko, 2007]:  α

                                                               const
T
1β
α

T =−= .                                                 (1.125)  

 If  then (using (1.125)) we obtained [Simonenko, 2007] the expression for V  in 
relation (1.122) 

constTTα == C

                                                                     Vc T
2
с

= .                                                                 (1.126)  

 We obtained then (in relation (1.121)) the expression for the angular velocity Ω  of rotation of the 
mass center of each subsystem   [Simonenko, 2007]:  α

                                                                      Ω
2
Ta

= .                                                                 (1.127)  
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 We see that the angular velocities of rotation of the mass center of each subsystem   are equal in the 
state of thermodynamic equilibrium. Thus, we obtained [Simonenko, 2007] from the condition (1.123) the 

expression 

α

T
1

T
1β
α

T −=−=  (given by (1.125)) in relation (1.121) for the speeds  of the mass centers 

of all subsystems. It is clear that the coefficient   must have the same physical dimension as the physical 

dimension of the value  

αc,V

Tβ

αT
1

. However, the determination  by  equating to zero of the derivative of the 

Lagrangian function L (determined by  expression (1.123)) on 

Tβ

( )αSK  do not elucidate the question relative 

to the values of , which give the maximal value of the entropy S . We obtained [Simonenko, 2007] 

the constants  and  (for ):  

( )αSK tot

a c constTTα ==

                                                                a
T

2
,

T
2 сVcΩ

==                                                        (1.128)  

and showed that the mass centers of all subsystems (see the  expression (1.121)) rotate as a whole in the 
rigid-like rotational continuum motion. The value  must be constant for all subsystems in the state of 

thermodynamic equilibrium. Consequently, from relation (1.125) we concluded that =

Tβ

Tβ T
1

−  in the state of 

thermodynamic equilibrium in which the temperature of all subsystems are equal: . TTα =
 We have shown above that the condition of maximal entropy at the state of thermodynamic 
equilibrium gives that the mass center of each subsystem rotate on the circular trajectory characterized by  
the corresponding fix distance from the axis of rotation . Let us analyze the question relative to the   

values of the  macroscopic internal  shear kinetic

Ω
  energies ( )αsK  and  defining  the state of  the 

thermodynamic equilibrium of each subsystem α. Using the condition (1.27) of local thermodynamic 
equilibrium and the definitions (1.11) and (1.12), respectively, for the  macroscopic internal shear kinetic 
energy  of the continuum region   and the macroscopic  kinetic  energy  of  shear-rotational  coupling 

, we obtained [Simonenko, 2007] that the subsystems α  (α = 1, 2,…, N)  have the non-equilibrium 

macroscopic

α)(Kcoup
rs,

Ks τ
Κ s,r

co pu

  internal  shear   kinetic energies  ( ) 0K αs =  and the non-equilibrium macroscopic  internal 

kinetic energies of shear-rotational coupling  in the state of thermodynamic equilibrium 
characterized by the conditions (1.118). 

0)(Kcoup
rs, =α

 It means that the all composite parts of each subsystem rotate in a rigid-like motion in the state of 
thermodynamic equilibrium. Since the vector Ω  is fixed for the total thermohydrogravidynamic system then 
the projection of the vector  r (on the direction perpendicular to Ω ) is constant. We showed  

[Simonenko, 2007] that the rigid-like rotation (of the closed thermohydrogravidynamic system) is the state of 
thermodynamic equilibrium characterized by the maximal entropy under the imposed conservation laws for 
the total energy, the total momentum and the total angular momentum of the thermohydrogravidynamic 
system. We concluded [Simonenko, 2007] that the planets of the Solar System cannot rotate ideally (with 
constant angular velocities of internal rotation) owing to the external (cosmic) disturbing energy gravitational 
influences (acting on the planets of the Solar System). 

αс,

 
 
 
 

1.7. Generalized Le Chatelier-Braun’s principle for rotational thermohydrogravidynamic systems 
characterized by the shear-rotational states     
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Following the “Thermohydrogravidynamics of the Solar System” [Simonenko, 2007], in Subsection 
1.7 we present  the generalization of the Le Chatelier – Braun principle [Landau and Lifshitz, 1976] on the 
closed rotational thermohydrogravidynamic  systems  ( τ  + τ ) consisting of two subsystems   and τ τ . The 



Le Chatelier-Braun’s principle (for induced small deviations of the subsystem  from the state of the 
thermodynamic equilibrium) is formulated [Landau and Lifshitz, 1976; p. 84] as follows. The external action 
(disturbing the body from the state of thermodynamic equilibrium) stimulates the processes, which tend to 
diminish the results of this  disturbing action [Landau and Lifshitz, 1976; p. 84]. 

τ

Let us consider the closed rotating thermodynamic system ( +τ τ ) consisting of the unclosed 
individual macroscopic  continuum region τ  (the subsystem in the  viscous compressible continuum, which 
can be the focal region of earthquakes) and some large subsystem τ  complementing the subsystem  to 
obtain the closed thermodynamic system ( +

τ
τ τ ). Let  S be the total entropy of the thermodynamic system, 

 is the some quantity determining  the state of the subsystem , such as that the condition of maximal 
entropy S relative to  у: 
у τ

                                                                              0
у
S
=

∂
∂

                                                                      (1.129)  

indicates that the subsystem  is in the state of the partial thermodynamic equilibrium.  Under such 
condition, the subsystem  is not necessary in the thermodynamic equilibrium with the surrounding 
subsystem 

τ
τ

τ . We, obviously, consider here the  partial (internal) thermodynamic equilibrium of the 
subsystem  since the one parameter, as a rule, is not  enough to define the condition of thermodynamic 
equilibrium of the subsystem  located in the closed thermodynamic system ( +

τ
τ τ τ ). 

Let  be the second  thermodynamic variable (describing the subsystem ) such as that if we have 
also the condition: 

x τ

                                                                   0
х
S
=

∂
∂

                                                                       (1.130)  

at the same time with the condition (1.129) then it means that the subsystem  is not only in the internal 
(partial) thermodynamic equilibrium, but the subsystem  is also in the thermodynamic equilibrium with the 
surrounding subsystem 

τ
τ

τ . 

 We assume that the total energies  and τE τ
E  of the macroscopic subsystems   and  τ τ , respectively,   can 

be expressed by the following relations [Simonenko, 2007]:  

         = = + + ,            (1.131)  τE τττ πUK ++ τ
puco

rs,τsτrτt )(K)K()K()(K +++ τres )(K ττ πU +

          τ
E = τττ πUK ++ = τ

puco
rs,τsτrτt )(K)K()K()(K +++ + τres )(K + ττ πU + .            (1.132) 

in accordance with the  generalized formulation   (1.43)  of the first law of thermodynamics and in 
accordance with the generalized formula (1.6) for the macroscopic kinetic energy of the small continuum 
regions:  the subsystems  and τ τ . 

The definitions of all terms corresponding to subsystem  in  formula (1.131) are given in Subsection 
1.2. The definitions of all terms corresponding to the subsystem 

τ
τ  in  formula (1.132) are analogous. 

Let us consider the angular momentum  of the macroscopic continuum region  as the variable 
. We designate the angular momentum of the subsystem 

τM τ
y τ  by the symbol 

τ
M . Considering the total 

entropy of the closed system ( +τ τ ) (containing  the subsystems   and τ τ ): 
                                            )E,(S)E,(SS ττττττ MM +=  

and supposing that the total  angular momentum  of the closed system ( +M τ τ ) is constant: 
                                                        MconstMMM =+=

ττ , 
we obtained [simonenko, 2007] that the condition  (1.129) gives the relation: 
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from which we obtained [simonenko, 2007] the condition 

                                                                            
τ

τ

τ

τ
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ΩΩ

=                                                                     (1.133)  

as a consequence of the formula [Landau and Lifshitz, 1976; p. 51, 93]: 
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According to the previous results of Subsection 1.6, the temperature  of the subsystem  and the 
temperature  

τT τ

τ
T  of the surrounding subsystem  τ  are equal (

ττ TT = ) in the state of thermodynamic 

equilibrium. Then we have from relation (1.133) the equality of the angular velocity  of rotation of the  
subsystem  and the angular velocity 

τΩ
τ

τΩ  of rotation of the surrounding  subsystem τ  for 
ττ TT =  in 

accordance with the results of Subsection 1.6. Thus, the condition  (1.129) means for  that the 
angular velocities of rotation  and 

τy M=

τΩ
τ

Ω  are equal ( =τΩ
τ

Ω ) for the subsystem  and for the surrounding 
subsystem 

τ
τ. This is the partial condition of  the thermodynamic equilibrium  for the subsystem . τ

Let us consider the macroscopic internal shear  kinetic   energy  [Simonenko, 2004] of the 
macroscopic  continuum region  as the variable . Considering  the condition  (1.130) of equilibrium for 

: 

τs )(K
τ x

( )τsKx =

                                                                           ( ) 0
K

S

τs

=
∂
∂

                                                                  (1.134)  

and assuming that the total energy of the closed thermodynamic system is constant: 

                                                               +  τE τ
E = , Еconst

we obtained [Simonenko, 2007] the following condition: 
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from which we derived the following condition  [Simonenko, 2007]: 

                                                                             
ττ T

1
T
1
=                                                                     (1.136)  

as a consequence of formula  [Landau and Lifshitz,  1976; p. 93 and  p. 51]: 

                                                                      
T
1

E
S
=

∂
∂

 

and relation 
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τ
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τ =
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=

∂
∂
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From relation (1.136) we obtained [Simonenko, 2007] that the temperature   of the macroscopic 
region  is equal to the  temperature 

τT
τ

τT  of the surrounding subsystem τ. It is the partial condition of the 

thermodynamic equilibrium. The choice of the variable ( )τsKx =  is made to show that the energy ( )τsK  is 
the physically significant variable. We also showed [Simonenko, 2007] that the total energies of the 
subsystems  and τ τ  may be calculated by using the  formulae  (1.131) and (1.132). In Section 3 it will be 
used. Thus, the conditions (1.129) and (1.130) denote that the subsystem  is characterized by the internal 
thermodynamic equilibrium (the rigid-like rotation at constant temperature) and simultaneously the 
subsystem  is characterized by the   thermodynamic equilibrium with the surrounding environment 
(medium) having the same temperature and rotating with the same angular velocity of rotation. Thus, we 
evaluated [Simonenko, 2007] the physical significance of the thermodynamic parameters (variables) =  

and =  for the subsystem . The consideration of these variables results to the classical conditions 
[Landau and Lifshitz, 1976] of the thermodynamic equilibrium  for the rotating body.  This gives the basis to 
consider the generalized thermodynamic forces (acting on the subsystem ): 

τ
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We considered [Simonenko, 2007]  the conditions of the thermodynamic equilibrium  [de Groot and Mazur, 
1962; Prigogine, 1977] of the subsystem τ:        
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                                                                              ,0FX =                                                                        (1.139)  
                                                                              ,0FX =                                                                        (1.140)  
which are equivalent  to conditions (1.129) and (1.130). The conditions (1.139) and (1.140) of the 
thermodynamic equilibrium denote [Prigogine, 1977] the following condition for the first differential dS : 

                                                     0dy
y
Sdx

x
SdS =

∂
∂

+
∂
∂

=  

for the state of the thermodynamic equilibrium  of the closed thermodynamic system. Decomposing the 
change of the entropy S  of the total thermodynamic system relative to the value  of the entropy in the 
equilibrium state  [Prigogine, 1977]: 

oS

                                                           Sd
2
1dSSS 2

o +≈− ,                                                          (1.141) 

we obtained [Simonenko, 2007] (taking into account that 0dS =  in the state of the thermodynamic 
equilibrium)  the negative  sign of the second differential , i.е. . We obtained [Simonenko, 
2007]  the conditions: 
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                         (1.143) 

in addition to conditions (1.139) and (1.140) as a consequence of the negative sign ( ) of the second 
differential  of entropy   

0Sd2 <
Sd2 .S

We also obtained [Simonenko, 2007] the necessary condition:  
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                                                        (1.144)  

from conditions (1.142) and (1.143). 
It is well known that the state of the thermodynamic equilibrium of the closed thermodynamic system 

is stable [Prigogine, 1977]. Consequently, the subsystem  of  the closed equilibrium thermodynamic 
system cannot obtain the macroscopic internal shear  kinetic

τ
 energy  by action of the surroundings (the 

ambient environment 
SK

τ ) of the subsystem . It is clear that we can create the condition   only by 
action on the subsystem  of the external (for the closed system) force (for example, the external force of 
gravitation). Considering the Le Chatelier-Braun’s principle, Landau and Lifshitz [Landau and Lifshitz, 
1976] supposed also the availability the external action disturbing the thermodynamic equilibrium of the 
continuum region  with the ambient environment (

τ 0)(K τS >
τ

τ τ )  in the closed thermodynamic system.  
We showed [Simonenko, 2007] that the transient external influence on the subsystem τ (related with 

the added macroscopic internal shear kinetic energy  to the subsystem  during this influence) 

can decrease the entropy S of the total  system up  to some quantity 

0)(K τS > τ

y
S , which is less than the value  in 

the equilibrium state (in accordance with the Reif’s understanding [Reif, 1977] of the mechanism of 
decreasing of the entropy of the body as the result of  interaction with  external bodies). We showed 
[Simonenko, 2007] then that the entropy S of the thermodynamic system is increased after the relaxation 
processes in closed system, but do not reach the value  in the initial equilibrium state. The entropy S is 
less than   as a result of the relaxation processes diminishing the result of the external action on the 
subsystem τ.  

oS

oS
оS

The external influence on the subsystem  disturbs the thermodynamic equilibrium of the subsystem 
 with the surrounding subsystem 

τ
τ τ  by means of the added macroscopic internal shear kinetic energy 

 and the subsequent violation of the condition (1.139) of thermodynamic equilibrium denoting (as 
a consequence of condition (1.136)) the equality of temperature  of the subsystem  and the temperature 

0)(K τS >

τT τ

τ
T  of the surrounding environment (medium) τ  of the closed thermodynamic system. Really, the 
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deformation of the subsystem  is related with the increase  relative  to the zero equilibrium value. It 
develops  the relaxation processes  in the subsystem  related with dissipation

τ τs )(K
τ  of the energy  to heat 

and corresponding heating of the subsystem  as a result of shear and volume molecular viscosity in the 
considered continuum. This results to the violation of the condition (1.139). Some amount of energy  
converts to the radiation of seismic acoustic waves. 

τs )(K
τ

τs )(K

Following to the formal scheme [Landau and Lifshitz, 1976] of presentation of the Le Chatelier-
Braun’s principle, we assumed  [Simonenko, 2007] that some projection  iτi )(yy M=≡  (the projection of 
the vector  on the axis ХτM i of the Cartesian coordinate system K ) do not change immediately as a result 
of the sharp change  relative to the equilibrium zero value. Such  spontaneous influence 

, as shown above, is not possible in equilibrium thermodynamic fluid system since the liquid 
deforms under the weak  stress forces. It is possible for the solid Earth’s crust of the lithosphere

0)(K τS >
0)(K τS >

  as a result 
of transformation of the accumulated potential energy [Abramov, 1997] of elastic compression and 
deformation to the macroscopic internal shear kinetic energy . The gravitational influence of the 
system Sun-Earth-Moon is considered [Abramov, 1997] as the trigger

τs )(K
 mechanism of discharge (of the 

accumulated potential energy) in the focal regions of earthquakes. The last term in the right of the 
generalized differential  formulation (1.43) of the first law of thermodynamics express the total influence (on 
the  macroscopic volume  ) of the non-stationary (time-dependent) gravitationalτ   field induced by planets 
(and satellites) of the Solar System, the Sun, Moon, the midget planets, known asteroids and comets of the 
Solar System. The last term in the right-hand side of the generalized differential formulation (1.43) describes, 
obviously, the mechanism of  the energy gravitational influence on the earthquake focal region. In Section 3 
we shall present the foundation of the significance of the energy gravitational influences of the Moon, the 
Sun, the Venus, the Jupiter and the Mercury as the cosmic trigger  mechanism of discharge in the focal 
regions of earthquakes.    

Following to the formal scheme [Simonenko, 2007], let ≡∆=∆ τs )(Kx τs )(K  be the change of the 
macroscopic internal shear kinetic energy relative to zero equilibrium value for the momentary action on the 
subsystem . The change τ XF∆  of the magnitude of the generalized  thermodynamic force  (as a result 
of the external action on the subsystem )  is  equal (under condition 

XF
τ iτi )(yy M=≡  = const) [Simonenko, 

2007]: 
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The change of the value  after the action on the subsystem  leads to the  violation of the 
condition of thermodynamic equilibrium (1.140), corresponding to equality (1.133), since the temperature 

 is increased  in the subsystem  (as a result of dissipation

τs )(Kx = τ

τT τ   of the macroscopic internal   shear  kinetic 
energy τs )(K ) and the angular velocity of rotation  of the subsystem  is changed in accordance with  
the generalized differential

τΩ τ
  formulation (1.43) of the first law of thermodynamics. The generalized  

thermodynamic force ΧΧ FF ∆≡  will have the following value [Simonenko, 2007]: 
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=                                                    (1.146)  

after the time moment of attainment of the condition 0F =Υ  of internal equilibrium in the subsystem  (and 
the satisfaction of the conditions  (1.133) and (1.136)) as a result of the outflow of heat from subsystem  
and the attainment of equality of the  angular velocity  of rotation of the subsystem  and the angular 
velocity 

τ
τ

τΩ τ

τ
Ω  of rotation of the surrounding  subsystem τ  (as a result of radiation of the seismic acoustic 

waves from the subsystem  and its surroundings). Here the derivativeτ  is taken for the constant value 
. 0FY =

 We compared [Simonenko, 2007] the changes of the magnitude of the generalized  thermodynamic 
forces  and , given by the expressions (1.145) and (1.146), respectively. Using the results 
[Landau and Lifshitz, 1976], we obtained [Simonenko, 2007]:  
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Taking into account the inequality (1.143) and also the negative sing (according to inequality (1.144)) 
of the denominator in the second term of  (1.147), we obtained [Simonenko, 2007] the condition:  
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or   
                                                                           ( ) ( ) .∆F∆F 0FΧyΧ Υ=

<                                                              (1.149)  

We obtained [Simonenko, 2007] from expressions (1.142) and (1.145): 
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We showed [Simonenko, 2007] that < 0. Taking into account the expressions of the second 
differentials of entropy:  
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for constant  and , respectively, and also the inequality (1.149) and condition , we 
obtained [Simonenko, 2007] that relations (1.150) and (1.151)  give the inequality [Simonenko, 2007]: 
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from which follows that < 0. Thus, the external deformational influence on the subsystem τ  (in the 

form of the added macroscopic internal shear kinetic energy  creating the condition 
0ΥFx )F(

=

τs )(K 0Sd
y

2 < ) 

stimulates the relaxation processes in the subsystem , which give the attainment of the inequality (1.152). 
We see that the relaxation processes attenuate the decrease of entropy of the thermodynamic system as a 
result of the added macroscopic internal shear kinetic energy   to the subsystem . Taking into 
account that the generalized thermodynamic forces  and  are negative in  inequalities (1.150) 
and (1.151), the inequality  (1.149) can be rewritten as the following inequality [Simonenko, 2007]: 

τ

τs )(K τ
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which presents the content of the stated [Landau and Lifshitz, 1976] above the Le Chatelier-Braun’s 
principle for induced small deviations of  the subsystem  (located in the surrounding environment τ τ  
composing with the subsystem  the closed  thermodynamic system) from the state of thermodynamic 
equilibrium. Using the inequality (1.152), we obtained [Simonenko, 2007]  
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i.e. the entropy 
0FΥ

S
=

 is increased in compared to the entropy 
y

S  (related with the added macroscopic 

internal shear kinetic energy  to the subsystem ) after completion of the relaxation processes in 
the thermodynamic system. However, the entropy of the thermodynamic system (after completion of the 

0)(K τS > τ
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relaxation processes) do not attain the value  corresponding to the initial equilibrium state but it is less 

than . We obtained [Simonenko, 2007] the increase of entropy 
оS

оS S∆ =
0FΥ

S
=

- 0S
y
>  in the thermodynamic 

system as a result of irreversible processes relaxing the deformational influence (related with the added 
macroscopic internal shear  kinetic energy  to the subsystem ) on the subsystem . 0)(K τS > τ τ

Thus, we have shown that the macroscopic internal shear kinetic energy  and the angular 
momentum  (of the macroscopic continuum region ) can be considered as the thermodynamic variables 
(  and ) describing the state  of the macroscopic continuum region  (the subsystem  located in the 
closed thermodynamic system). We established [Simonenko, 2007] that the entropy S  of the thermodynamic 
system is reduced up to the some value 

τs )(K

τM τ
x y τ τ

y
S (which is less than the value  characterized the equilibrium 

state of the thermodynamic system) as a result of the external momentary deformational influence 
(especially, induced by cosmic gravitation) on subsystem  related with the added macroscopic internal 
shear kinetic energy , when the some component

oS

τ
τs )(K   iτi )(yy M=≡  of the angular momentum  do 

not  change directly as a result of sharp change  relative to the equilibrium zero value. 
Generalizing the Le Chatelier-Braun’s principle on the rotational thermodynamic systems, we showed 
[Simonenko, 2007]  that the total entropy of the closed thermodynamic system is increased up to the value 

τM
0)(K τS >

0FΥ
S

=
, which is less than the value  and is larger than the value oS

y
S   ( >oS

0FΥ
S > 

= y
S )  as a result of 

irreversible relaxation processes in the thermodynamic system diminishing the result of the deformation 
influence on the subsystem  related with the added macroscopic internal shear  kinetic energy  
to the subsystem .  

τ 0)(K τS >
τ

 
 
 
 

1.8.  The non-equilibrium statistical thermohydrogravidynamics of turbulent plasma 
subjected to the non-stationary gravitational and electromagnetic fields 

 
Based on the founded Non-equilibrium Statistical Thermohydrodynamics of Turbulence [Simonenko, 

2004; 2006] and the Thermohydrogravidynamics of the Solar System [Simonenko,  2007; 2008; 2009; 2010] 
it was deduced (in 2011) the subsequent generalization of the first law of thermodynamics (for moving 
rotating deformed compressible heat-conducting stratified individual macroscopic region  of turbulent 
electromagnetic plasma subjected to the non-stationary Newtonian gravity and the non-stationary 
electromagnetic field):  

τ

        (1.155) τ
2

τnp,me,me,τm,e,τττ dmcdGδAδQδQδFdEddKdUP(t)dt π ++++=+++++ ∂

extending the established generalized differential formulation (1.50) by taking into account the infinitesimal 
change  of the internal energy  of turbulent plasma without the emitted fast neutrons in the 

individual region , the increment  of the macroscopic kinetic energy  of turbulent plasma in the 
individual region , and the following additional terms: the useful energy production  of fast 
neutrons (emitted during time interval dt  due to the thermonuclear reaction between two nuclei of deuterium 
or between  nuclei of deuterium and tritium in a high temperature plasma) characterized by the positive 
released energy power  (which should be directed from the individual region  to sustain the controlled 
thermonuclear process), the differential change  of electromagnetic energy  inside the 

individual region  of plasma, the energy flux  of electromagnetic energy radiated across the 

boundary surface  of the individual region 

τdU τU
τ τdK τK
τ P(t)dt

P(t) τ

τm,e,dE τm,e,E
τ me,δF

τ∂ τ , the differential heating  due to the differential work 
of electrodynamic forces (resulted to the Joule heating owing to the plasma current) and due to the dissipated 
electromagnetic waves inside the individual region 

me,δQ

τ , and the differential amount of energy  
released (as a consequence of the thermonuclear burning mechanism proposed by Dr. Hans Bethe in 1939  
for the Sun) due to the thermonuclear reaction related to the conversion of the differential amount of mass 

0dmc τ
2 >
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τdm  (a small difference between the initial and final reactive components of the thermonuclear reaction 
inside the individual region τ ) into energy. The problem of the controlled thermonuclear reactions (analyzed 
by Academician P.L. Kapitza in 1978  in his Nobel Lecture [Kapitza, 1978]) has not yet been solved by the 
world national and international research centers. It is clear that the general generalized differential 
formulation (1.155) represents the thermodynamic key for the final solution of this problem. The general 
generalized differential formulation (1.155) of the first law of thermodynamics is deduced to describe the 
combined thermohydrogravielectromagnetic dynamics of the controlled thermonuclear reactions inside the 
individual region  of turbulent electromagnetic plasma subjected to the non-stationary Newtonian gravity 
and the non-stationary electromagnetic field. In particular, the reduced differential formulation               

τ

                                                          τpτm,e, pdVδAdE −==                                   (1.156)  
(with zero others terms in formulation (1.155)) leads to the Stefan-Boltzman law  
                                                                                                                                     (1.157) 4

ττm,e, T~V/E
and to the classical [Landau and Lifshitz,  Statistical Physics, 1976] relation  
                                                                                                                                         (1.158) constpV4/3

τ =
for the adiabatic process related with the equilibrium electromagnetic black-body radiation (the gas of 
photons) contained in the individual region τ characterized by the volume . It is clear without any doubt 
that the sustainable controlled thermonuclear reactions can be realized under the reliable controlled 
synchronization of the different differential terms in the general generalized formulation (1.155), which takes 
into account the combined thermohydrogravielectromagnetic dynamics related with the sustainable 
thermonuclear process characterized by the useful energy power  released from the individual 
region   of turbulent electromagnetic plasma subjected to thermonuclear reaction.  

τV

0P(t) >
τ

The generalized formulation (1.155) of the first law of thermodynamics (for moving rotating deformed 
compressible heat-conducting stratified individual macroscopic region τ of turbulent electromagnetic 
plasma subjected to the non-stationary Newtonian gravity and the non-stationary electromagnetic field) can 
be used by the young scientists and researchers of the world (“Benedictio Domini sit vobiscum”) for the 
urgent nearest practical realization of the controlled thermonuclear reactions to enhance the energy power of 
humankind before the forthcoming range AD 20612020 ÷  [Simonenko, 2012]  of the maximal 
seismotectonic, volcanic and climatic activities of the Earth in the 21st century during the past 

years of  the history of humankind. 708696 ÷
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2. THE COSMIC GEOLOGY 
 

           
2.1. The total energy and the total angular momentum of the Solar System 

 
Following the works [Simonenko, 2007a; 2007; 2008; 2009; 2010], we present the fundamentals of 

the cosmic geology. We consider the Solar System as the unclosed non-equilibrium thermodynamic system 
by taking into account the influences of the external (cosmic) gravitational field of our Galaxy. We consider 
the planets of the Solar System as unclosed non-equilibrium thermodynamic systems subjected to  the 
gravitational influences of the Solar System and the external (cosmic) gravitational field of our Galaxy.  The 
gravitational influences of the Solar System and the external (cosmic) gravitational field of our Galaxy 
deform the lithosphere of the Earth and displace the tectonic geo-blocks disturbing the Earth’s continuum 
near the ideal rigid-like rotational state of the thermodynamic equilibrium.  

We deduced [Simonenko, 2007; 2008; 2009; 2010] the expressions for the total energy and the total 
angular momentum of the Solar System. The position-vector  of the mass center of the planet τα,cr α is given 

by the following expression [Simonenko, 2007; 2008; 2009; 2010]: 

                                     α,cr =
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The speed of the mass center  of the planet ταС α (characterized by mass )  is given by the 
following  expression [Simonenko, 2007; 2008; 2009; 2010]: 
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The macroscopic kinetic energy of the planet τα  is given by the following  expression [Simonenko, 2007; 
2008; 2009; 2010]: 
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ρ d
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The hydrodynamic continuum velocity in the vicinity of the position-vector   of the mass center 

 of the planet τ
α,cr

αС α is given by the Taylor series expansion [Simonenko, 2004; 2006; 2007; 2008; 2009; 
2010]: 
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is the angular velocity vector of rotation of the planet τα; 
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is the rate of strain tensor at the position-vector  of the mass center  of the planet τα,cr αС α;  
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∑=
3

1=i
iiα,resα, w µv  is the residual part of the Taylor series expansion (2.4) for the planet τα;  

                                                 =α,iw ( )3dO
ατ ,  ( i= 1, 2,  3); 

                                                = ατ
d ( )2

BA
)BA(sup ,r

, ατ∂∈
  

is the diameter of the planet τα , is the boundary surface of the planet’s τ
ατ

∂ α  continuum.  

The macroscopic kinetic energy of the planet  τα  (considered as the macroscopic continuum region τα  

characterized by practically constant values of the angular velocity vector ω )r( ,αc  and the rate of strain 

tensor  for the continuum region τ)r( ,αсije α) is given by the following expression [Simonenko, 2004; 2005; 

2006; 2007; 2008]: 
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is the macroscopic translational kinetic energy of the orbital movement of the planet  τα  moving as a whole 
at speed   of the mass center of the continuum region of the planet  ταc,V α,                                   

                                           =ατr )K( 1
2
∑ αα ωω

3

1=ki,
,ck,ciαik )()()C(I rr                                       (2.7)  

the  macroscopic  internal  rotational  kinetic  energy  of the planet  τα  rotating with the angular velocity  
 as a  whole,   ω )r( ,αc

                                         =
ατs )K( 1

2
∑ α

3

1=kj,i,
αc,ikc,ijαjk )(e)()e(СJ rr                                    (2.8)  

is the macroscopic internal shear kinetic energy of the planet  τα  subjected to continuum deformation by the  
local  shear related with the rate of strain tensor , )r( ,αсije

                                      =                             (2.9)  ατ
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rs, )(K ∑
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3
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c,ijmijk )()ω(СJε r )(e c,km αr

is  the  macroscopic  kinetic energy of shear-rotational  coupling of  the  planet τα   (related with the kinetic 
energy   of   planetary   coupling   between   irreversible  dissipative  shear  and reversible  rigid-like  
rotational  macroscopic   continuum   motions   in   the  continuum   region  of the planet  τα),  = 

  is   a small  residual   part   of   the   macroscopic   kinetic  energy  of  the planet  τ

ατres )(K

)O(d7
τα

= α  related  with 
the  residual terms  in the Taylor series expansion (2.4).   

The classical  inertia  tensor  and  the  classical  centrifugal tensor   of  the planet 

τ

)( αСIik )( αСJ jk

α  (relative to the mass center  of the planet ταС α) are given  by the classical expressions  
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 The component  of the  angular  momentum  (relative to  the  mass center   of the planet 

τ

)i(MС
τα αС

α) of the planet τα  is given by the  following  expression   [Saffman, 1992]:   

                  =)i(MС
τα

)(ω))C(J)C(J(δ
2
1)C(J)(eε c,jαijαkkijαjc,kijk αα −+ rr ll .            (2.12)  

We obtained [Simonenko, 2007; 2008] from expression  (2.12)  the  classical formula [de Groot and 
Mazur, 1962;  Gyarmati, 1970] for uniform spherical continuum region τα  (characterized by constant 
density): 
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We obtained [Simonenko, 2007; 2008] the following expression for the total angular momentum 

 of the planet τατM α  (or the satellite τα  of a planet):     
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The first term (1) of the expression (2.14) is the orbital angular momentum of the planet τα   related 

with the orbital movement of the planet τα, the second term (2) is the internal shear angular momentum  
related with the non-equilibrium deformation of the planet τα  (the continuum region of the planet τα), the 
third  term (3) is the internal rotational angular momentum related with the equilibrium rotational motion of 
the planet τα (the continuum region of the planet τα).  

The total energy  of the planet  τατ
E α  is given by the following expression [Simonenko, 2007; 

2008]:   
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                                               =                                                                        (2.15a) ατ
π Vψρd∫∫∫

ατ

is the macroscopic potential energy of the planet τα related with the non-stationary potential  of the 
gravity field produced by the planet τ

ψ
α and by the surrounding planets (and satellites) of the Solar System, 

the Sun, the Moon, midget planets, known asteroids and comets of the Solar System and by our Galaxy,   

                                                 =                                                                        (2.15b) 
ατ

U dVuρ∫∫∫
ατ

is the classical internal thermal energy of the  planet τα,  

                                               ∫∫∫−=
R
ρdVγ)t,(ψ r                                                                     (2.16) 

is the potential of the gravitational forces created for time moment t  by the mass distribution (of the 
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surrounding planets (and satellites) of the Solar System, the Sun, the Moon, midget planets, known asteroids 
and comets of the Solar System, and our Galaxy) characterized by the mass density  at the point of the 
three-dimensional space defined by the position-vector r , R is the distance between the element of mass 

dV and the point of space characterized by the position-vector r .   

ρ

ρ
Considering the Solar System as the open thermodynamic system containing the set of separate 

thermodynamic subsystems (planets τα and satellites of the planets) and disregarding the presence of 
atmospheres and hydrospheres (of planets and satellites of the planets), we derived the expressions 
[Simonenko, 2004а; 2007; 2008] for the total energy and the total angular momentum for the Solar System 
consisting of  N cosmic material objects (the surrounding planets (and satellites) of the Solar System, the 
Sun, the Moon,  midget planets, known asteroids and comets of the Solar System):  

    ∑
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N

0α
{

α
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τ

2
τ
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)(P
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where the index  corresponds to the Sun, the non-zero indexes   0α = 0α ≠  correspond to the cosmic 
material objects (planets, satellites of planets, midget planets, known asteroids and comets of the Solar 
System). The system (2.17) and (2.18) of algebraic equations (which contains the all real parameters of the 
Sun, planets, satellites of planets, midget planets, known asteroids and comets of the Solar System)  gives the 
possibility of transformations between the different energies (of the surrounding planets (and satellites) of 
the Solar System, the Sun, the Moon, midget planets, known asteroids and comets of the Solar System) 
related with the corresponding changes of orbital parameters (of  the surrounding planets (and satellites) of 
the Solar System, the Sun, the Moon, midget planets, known asteroids and comets of the Solar System) and 
the directions of rotation of the surrounding planets (and satellites) of the Solar System, the Sun, the Moon, 
midget planets and known asteroids of the Solar System. It was pointed [Vikulin and Melekestcev, 2007] the 
predominant contribution of the Jupiter (more than 60%) and the Saturn (near 30%) into the total angular 
momentum of the Solar System.  

The system of equations (2.17) and (2.18) contains in the right-hand sides the variation of the total 
energy  and the variation of the total angular momentum  )(tEtotδ totMδ  related with the external 
(cosmic) energy gravitational influences of our Galaxy on the Solar System. We deduced [Simonenko, 2009; 
2010] the expression for the total energy  of the Solar System by taking into account the 
atmospheres and hydrospheres of the planets and satellites, the midget planets and known asteroids of the 
Solar System.   

)t(E tot

Each planet (and the satellite, for example, the Moon) subjected to the external energy gravitational 
influences can reduce the overfilled internal energy (of the accumulated internal energy of continuum 
deformation, compression and strain) by creation of the new planetary fractures during the process of 
synchronization of the Earth and the planets of the Solar  System. We evaluated [Simonenko, 2004a; 2007; 
2008] the result of the thermodynamic process of the seismic (tectonic) relaxation of the planet ( +τ τ ) after 
formation of the new planetary fracture. Disregarding the influences of atmosphere and (or) hydrosphere τ  
during the small time of the seismic (tectonic) relaxation of the planet ( +τ τ ), we considered [Simonenko, 
2004a; 2007; 2008] the system of the conservation laws of the total energy and the total angular momentum 
of the subsystem of the planet ( +τ τ τ ):  
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Taking into account the weakness of the interaction effect between the subsystems and τ τ  
(atmosphere and (or) hydrosphere) on the boundary surface τ∂  and disregarding  the energy gravitational  
interaction of the subsystem with subsystem τ τ  and others cosmic material objects during the small time 



of the seismic (tectonic) relaxation, it was shown [Simonenko, 2004a]  that the system of equations (2.19) 
and (2.20)   admits the oscillating energy transformations between the accumulated internal energy  (of 
the accumulated internal energy of  continuum deformation, compression and strain of the subsystem ) 

and the macroscopic internal kinetic energies  ,  ,  . The oscillating energy 
transformations (subjected to the damping due to viscocity) are related with the small final change of the 
direction of rotation of the subsystem  of the planet ( +

τU
τ

τs )K( τr )K( τ
puco

rs, )(K

τ τ τ ) [Simonenko, 2004a].  
Recognizing in 2004 [Simonenko, 2004a] the general mathematical nature of the generalized 

differential formulation (1.50) of the first law of thermodynamics (valid for arbitrary finite macroscopic 
continuum regions of the ocean, atmosphere and the Earth’s interior), the author made the mental jump from 
the turbulent eddy [Simonenko, 2004; 2005; 2006] to the planets of the Solar System [Simonenko, 2007]. 
Based on the generalizations  (1.6) and (1.50) used for the planet (the Earth) of the Solar System, the author 
reported (in September 15,  2004 in the report “The macroscopic non-equilibrium kinetic energies of a small 
fluid particle” [Simonenko, 2004a] on the International conference on the Arctic and North Pacific, Chapter 
1: Climate change and natural disasters) about the inevitable abrupt change of the angular velocity vector of 
the Earth’s rotation during the strong earthquake. Since the convincing confirmation of this prediction for the  
December 26, 2004 Indonesia earthquake, the author concentrated during 2004-2010 on the subsequent 
parallel development of the Non-equilibrium Statistical Thermohydrodynamics of Turbulence [Simonenko, 
2005; 2006] and the Thermohydrogravidynamics (Cosmic Physics) of the Solar System  [Simonenko, 2007; 
2008; 2009; 2010] by synthesizing the Newton’s theory of gravitation, the Newton’s laws of motion and the 
classical thermodynamic, continuum mechanical, hydrodynamic, astronomical, geological, geophysical, 
seismological, climatological, hydro-geophysical and oceanological approaches into the presented deductive 
thermohydrogravidynamic theory of the global geological and geophysical planetary processes subjected to 
the non-stationary Newtonian gravitational field of the Solar System and our Galaxy. The predicted effect 
[Simonenko, 2004a] of the small abrupt change of the direction of rotation of the subsystem of the Earth 
is consistent with the real geophysical data [Kotlyar and Kim, 1994] demonstrating of the small abrupt 
change of the angular velocity of Earth’ rotation during the strong earthquakes.  
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2.2. Non-catastrophic models of the thermohydrogravidynamic evolution 

of the total energy of the subsystems of the planet ( +τ τ )  subjected to the cosmic  
non-stationary energy gravitational influences of the Solar System and our Galaxy 

 
 

2.2.1. Thermohydrogravidynamic evolution of the total energy  of  the τE
 subsystem  bounded by the external boundary surface  , on which  τ τ∂

the subsystem  interacts with the subsystem τ τ  representing the atmosphere 
 or atmosphere and hydrosphere of the planet ( +τ τ ) 

 
It was noted earlier [Zhirmunsky and Kuzmin, 1990] that the periods of circulation of the main 

majority of the planets of the Solar  System  (including the asteroids between the Mars and Jupiter) are close 
to the geometric progression  characterized by the module e  ( e =2.7182…), while  the Earth and Neptune 
fall out  from these planets. It demonstrates the special positions of the Earth and Neptune in respect to the 
others planets during process of formation of the Solar System and in the present time. It shows that the 
periods of circulation of the Earth and Neptune are not synchronized with the all totality of periods of  
circulation for others planets. The average distances of the planets of the Solar System from the Sun are 

practically synchronized forming the geometric progression characterized by module 32e  [Zhirmunsky and 
Kuzmin, 1990]. Consequently, it means the possible change of parameters of the orbit of the Earth (in the 
process of synchronization of the Earth and the all totality of the planets of the Solar  System) related with 
the change of the total energy (including the change of the angular velocity of the Earth’s rotation) and the 
periodic activization of the tectonic processes. 

Following the works [Simonenko, 2007a; 2007; 2008; 2009; 2010], we present the formulation of the 
non-catastrophic model of the thermohydrogravidynamic evolution of the total energy  of  the  subsystem 

 subjected to the cosmic non-stationary energy gravitational influences of the Solar System and our 
τE

τ
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Galaxy. The  subsystem  is bounded by the external boundary surface  τ τ∂ , on which the subsystem  
interacts with the subsystem 

τ
τ  representing the atmosphere  or atmosphere and hydrosphere of the planet 

( +τ τ )  subjected to the cosmic non-stationary energy gravitational influences of the Solar System and our 
Galaxy. Following to Gor’kavyi and Fridman [Gor’kavyi and Fridman, 1994], we consider the Solar System 
as the complex hierarchy of the thermohydrogravidynamic subsystems saturating by different energy sources 
and possessing by the amazing wealth of the collective processes. Using the generalized differential 
formulation (1.53) of the first law of thermodynamics, we deduced [Simonenko, 2007a; 2007; 2008; 2009; 
2010] the integral evolution equation (in the inertial coordinate system) for the total energy of an arbitrary 
planet (of the Solar System) considered as the macroscopic continuum region characterized by internal 
thermohydrogravidynamic structure.  

To take into account the additional energy source related with heating as the result of disintegration of 
radio-active elements of the planet of the Solar System, the human industrial activity and the underground 
nuclear explosions, we considered [Simonenko, 2007a; 2007; 2008; 2009; 2010]  (in the right-hand side of 
the generalized differential formulation (1.53) of the first law of thermodynamics) the new additional term 
related with the space-time density  of the sources of heat.  Taking into account the additional energy 
source , the formulation (1.53) can be rewritten as follows [Simonenko, 2007a; 2007; 2008; 2009; 2010]: 
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for the macroscopic continuum region , for example for  the subsystem  bounded by the external 
boundary surface  , on which the subsystem  interacts with the subsystem 

τ τ
τ∂ τ τ  representing the 

atmosphere or atmosphere and hydrosphere of the planet ( +τ τ ). Here n  is the external unit normal vector 
of the surface . The potential of the non-stationary gravity field  (in the subsystem ) is created owing 
to all objects of our Galaxy. The differential formulations (1.53) and (2.21) of the first law of 
thermodynamics take into account the heating related with the gravitational differentiation of the stratified 
continuum (inside the continuum region ) and the heating related with with the gravitational interaction of 
the considered  subsystem  with the surrounding material objects of our Galaxy. 

τ∂ ψ τ

τ
τ

Integrating the equation (2.21), we obtained [Simonenko, 2007a; 2007; 2008; 2009; 2010] the 
expression for the total energy  of the subsystem  of the planet ( +τ))t((E τ τ τ ): 
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The first term in the third row of the expressions (2.22) gives the energy exchange between the oceans 

and the atmosphere (containing the subsystem τ ) and the subsystem   containing the geo-spheres of the 
planet including the lithospheres of the Earth and the planets of the terrestrial group. The first term in the 
third row of the expressions (2.22)  controls  the angular velocity of rotation of the planet’s subsystem  . 
According to the expressions (2.22), the long-range changes of the Earth’s angular velocity of rotation are 
defined by the following factors: the periodic variation of the gravitational potential  (related with the 
first term in the fourth row of the expressions (2.22)) of the non-stationary gravity field  (produced by the 
planets (and satellites) of the Solar System, the Earth, the Sun, the Moon, midget planets, known asteroids 
and comets of the Solar System), the periodic changes of the intensity of solar radiation (the second term in 
the third row of the expressions (2.22)), which change the  distribution of average circulations of the 

τ

τ

ψ
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atmosphere and oceans and the corresponding thermohydrodynamic parameters (related with the first term in 
the third row of the expressions (2.22)) near the upper boundary of the Earth’s lithosphere. Considering the 
factor of the solar influence on the rotational motion of the Earth on the basis of the actual observations, it 
was obtained [Эйгенсон, 1958; p. 36] the similar conclusion about the universal role of the solar activity 
controlling partially the absolute value of the angular  velocity of the Earth’s rotation. It is important to use 
the real information [Dolgikh, 2000] about the lithosphere oscillations for modeling of the energy exchange 
(described by the first term in the third row of the expressions (2.22)) between the oceans and the atmosphere 
(containing the subsystem τ ) and the subsystem  containing the lithosphere and others geo-spheres of the 
Earth. 

τ

The first term in the fourth row of expression (2.22) gives the contribution to the change of the total 
energy of the subsystem  taking into account the change of the potential  of the non-stationary 
gravitational field (produced by the planet ( +

τ ψ
τ τ ) and others planets of the Solar System) in the subsystem 

 of the planet ( +τ τ τ ). According to the expression (2.22), the compression of the subsystem  of the 
planet ( +

τ
τ τ ) accompanied by the increase of the gravitation potential  in the fixed point of space must 

induce the increase of the internal thermal energy and the corresponding heat flux from the kernel of the 
planet. This conclusion is in agreement with the Milanovsky’s conclusion [Milanovsky, 1979] that the 
geological eras of the intensive increase of the heat flux correspond to the eras of general compression of the 
Earth. Three full cycles (of the geological eras of compression, stretching and more long-lasting reduction of 
the tectonic motions) [Milanovsky, 1979] of the total duration of 570 million years correspond 
approximately to three cycles of circulation (characterized by the period of 200 million years [Каzancev, 
2002; p. 10]) of the Solar System around the center of our Galaxy. Taking this into account, we revealed 
[Simonenko, 2007] the galactic energy gravitational genesis of each cycle (the compression, stretching and 
more long-lasting reduction of the tectonic motions) of the geological eras of the Earth during the latest 570 
million years. 

ψ

We obtained [Simonenko, 2007a; 2007; 2008] the time evolution of the total energy  for the 
planet  not having the atmosphere (for example, the Mercury) or for arbitrary satellite of the planet, except 
the Titan possessing the developed atmosphere and except the Triton possessing the weak atmosphere 
[Bazilevskii, 2000]. Integrating the equation (2.21) under the obvious   condition 

  on the external boundary 
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nTnv τ∂  of the considered celestial objects, we obtained 

[Simonenko, 2007a; 2007; 2008] the time  evolution law of the total energy : τ(E(t))
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2.2.2. Thermohydrogravidynamic evolution of the total energy τE  
of  the  subsystem τ  representing the atmosphere 

or atmosphere and hydrosphere of the planet ( +τ τ ) 
 

Following the works [Simonenko, 2007a; 2007; 2008], we shall present the formulation of the non-
catastrophic model of the thermohydrogravidynamic evolution of the total energy τE  of  the  subsystem τ  
representing the atmosphere or atmosphere and hydrosphere of the planet ( +τ τ ) subjected to the cosmic 
non-stationary energy gravitational influences of the Solar System and our Galaxy. Considering the 
differential formulation  (1.53) of the first law  of thermodynamics (with the additional source 

τ
e  of heat in 
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the subsystem τ ) for the subsystem τ  (atmosphere or atmosphere and hydrosphere), which surrounds the 
subsystem , we obtained [Simonenko, 2007a; 2007; 2008] the evolution equation for the total energy τ τE  

of the subsystem τ  (which has the external boundary surface )τ(τ +∂  and the inner boundary surface τ∂ ):                      
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where  is the external unit normal vector of the external boundary surface k )τ(τ +∂ ,  is the 

differential element of area of the surface 
kΣd

)τ(τ +∂ , n−  is the external unit normal vector of the inner 
boundary surface  of the subsystem τ∂ τ .  

 
 
 

2.2.3. Thermohydrogravidynamic evolution of the total energy )τ(τE
+   

of the planet ( +τ τ ) consisting from interacting (on the surface ) subsystems  τ∂
τ  and  τ  (the atmosphere or atmosphere and hydrosphere of the planet ( +τ τ )) 

 
 

Following the works [Simonenko, 2007a; 2007; 2008], we present the formulation of the non-
catastrophic model of the thermohydrogravidynamic evolution of the total energy )τ(τE

+  of the planet 

( +τ τ ) consisting from interacting (on the surface τ∂ ) subsystems   and  τ τ  (the atmosphere or 
atmosphere and hydrosphere of the planet ( +τ τ )) subjected to the cosmic non-stationary energy 
gravitational influences of the Solar System and our Galaxy. Adding the equations (2.21) and (2.24), we 
obtained [Simonenko, 2007a; 2007; 2008] the evolution equation for the total energy )τ(τE

+  of the planet 

( +τ τ ) consisting from interacting (on the surface τ∂ ) subsystems  and  τ τ :  
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Integrating the equation (2.25) under the obvious condition ( )( ) 0d
)ττ(

=Σ⋅⋅∫∫
+∂

kTkv   on the external 

boundary surface )τ(τ +∂  of the planet ( +τ τ ), we obtained [Simonenko, 2007a; 2007; 2008] the time 

dependence of the total energy )τ(τ(E(t))
+  of the planet ( +τ τ ): 
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The expression (2.26) shows that the total kinetic energy of the planet ( +τ τ ) cannot be presented as 
the sum of the kinetic energies of translational, rotational, shear and the shear-rotational coupling for the 
planet (as a whole) as a consequence of the thermodynamic non-equilibrium of the considered planetary 
continuum related with the shear continuum motion in the atmosphere and hydrosphere τ  of the planet 

( +τ τ ). The relation (2.26) shows that the total kinetic energy   τ))t((K , the total internal thermal energy  

)t(U τ  and the total potential gravitational energy  )t(τπ  of the subsystem τ  are the energy factors, 
which regulate the angular velocity of rotation of the subsystem of the planet ( +τ τ τ ), in particular the 

subsystem  of the Earth ( +0,3τ 0,3τ 0,3τ ) containing the atmosphere and hydrosphere  0,3τ .  

According to the expression (2.26), the total energy )τ(τ(E(t))
+   of the planet ( +τ τ ) changes as a 

result of the following factors: the heat flux in the form of electromagnetic radiation of the Sun on the 
external boundary surface )τ(τ +∂  of the planet ( +τ τ ),  the variation of the gravitational potential in  
subsystems  and τ τ  of the planet ( +τ τ ) due to the gravitational influences of celestial objects of the 
Solar System (including the own gravitational contribution of the planet) and the cosmic non-stationary 
gravitational influence of our Galaxy, the heating (inside the subsystem ) due to the disintegration of radio-
active elements, the heating in atmosphere and hydrosphere of the planet due to the human industrial activity 
(now for Earth and on others planets in future).  

τ

Considering the space-time energy density  as the energy density of the thermonuclear reaction 
inside the Sun and rejecting the last term  (containing space-time energy density 

τe

τ
e ),  we used  [Simonenko, 

2009; 2010] the equation (2.26) for the evaluation [Simonenko, 2009, p. 206; 2010, p. 206] of the relative 
maximal instantaneous energy gravitational influences of the planets of the Solar System on the Sun and for 
the foundation [Simonenko, 2009, p. 214; 2010, p. 214] of the cosmic energy gravitational genesis of the 
time periodicities of the solar activity induced by the planetary energy gravitational influences on the Sun. 

 
 

2.3. Cosmic geology of the Earth (of the terrestrial planet of the Solar System) taking into 
account the convection in the lower geo-spheres of the Earth (of the planet),  

the solar radiation, the disintegration of the radio-active elements,  the density  
differentiation, the translational, rotational, deformational and compressible movements  
of the tectonic plates, the creation of the new planetary fractures induced by the energy 

gravitational  influences of the Solar System and our Galaxy 
 

 
2.3.1. Thermohydrogravidynamic N-layer model of the non-fragmentary geo-spheres 

of the Earth (of the planet of the Solar System) 
 

Following the monographs [Simonenko, 2007; 2008], we shall present the thermohydrogravidynamic 
N-layer model of the non-fragmentary geo-spheres of the Earth (of the planet of the Solar System) taking 
into account the convection in the lower geo-spheres of the Earth (of the planet), the solar radiation, the 
disintegration of the radio-active elements,  the density differentiation, the translational, rotational, 
deformational and compressible movements of the tectonic plates, the creation of the new planetary fractures 
induced by the energy gravitational influences of the Solar System and our Galaxy. Let us consider  the 
thermohydrogravidynamic N-layer model [Simonenko, 2007; 2008] for the planet ( +τ τ ) having the 
atmosphere or the atmosphere and hydrosphere considered as the subsystem τ . We shall use for each planet 
of the Solar System the division of the inner material continuum of the planet on some number of N layers 
(different for each planet) in accordance with the established (in geology and geophysics) traditional 
conception [Abramov, 1993; Khain, 2003; Abramov and Molev, 2005] considering the internal structure of 
the Earth consisting of several  geo-spheres characterized by the different physical-chemical and 
thermodynamic properties.  
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Taking into consideration the generalized formulation (1.53) of the first law of thermodynamics, we 
obtained [Simonenko, 2007; 2008] the evolution equation (2.24) for the total energy τE  of the subsystem τ  
(which is the first upper layer (gas and liquid substance) of the atmospheric and hydrospheric planet). The 
evolution equation (2.24) take into account the next factors:  the flux to the subsystem  τ  of the heat in the 
form of electromagnetic radiation of the Sun on the external boundary surface )τ(τ +∂  of the subsystem τ , 
the energy gravitational influence (external and internal) on the  subsystem τ , the energy interaction 
between the subsystem   of the planet ( +τ τ τ ) on the inner boundary surface , the heating of the 
subsystem 

τ∂
τ  as a result of various sources (disintegration of the  radio-active elements and human  industrial 

activity).  
Let us consider the subsystem  (the first layer after the subsystem extτ τ ), having the external (for 

) surface   (see Fig. 2) as the inner boundary surface of the subsystem extτ τ∂ τ . The subsystem   has 

the inner boundary surface 
extτ

iτ∂ , which delimits the subsystem  from the next subsystem . Based on 
the generalized formulation (1.53) of the first law of thermodynamics, we obtained [Simonenko, 2007; 2008] 
the evolution equation for the total energy of the subsystem :  
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where (apart from the usual  designations)  is the external unit normal vector of the  surface   , n τ∂ im−  

is the external unit normal vector of  the internal  surface  iτ∂  of the subsystem  ,   is the 

vector of the continuum velocity on the external side of the surface 

extτ )τ( iext ∂v

iτ∂  inside the subsystem ,  is 
the space-time density of the heat sources related with disintegration of the radio-active elements in the 
subsystem  .   

extτ
extτe

extτ
Taking into account that the subsystem  (confined by the external surface   and located  inside 

the subsystem ) has no jumps of the velocity continuum, we obtained [Simonenko, 2007; 2008] the 

evolution equation for the total energy of the subsystem  (of the planet ( +

intτ iτ∂

extτ

intτ τ τ )):  
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where   is the vector of the continuum velocity on the internal  side of the surface     in the 

subsystem ,  is the external unit normal vector of  the surface  

)τ( iint ∂v iτ∂

intτ im iτ∂  of the subsystem  ,  is 
the space-time density of the heat sources related with disintegration of the radio-active elements in the 
subsystem  .   

intτ
intτe

intτ

Adding the equations (2.27) and  (2.28) (by using the equality i
d mΣ =  of the  elements of 

area of the surface ), we obtained [Simonenko, 2007; 2008] the evolution equation for the total energy of 
i

d m−Σ
iτ∂
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the thermodynamic subsystem  = +  consisting from two (interacting on the surface  of the 

tangential jump of the continuum velocity) subsystems  and  enclosed  inside of the subsystem : 

τ intτ extτ iτ∂
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where  is the space-time density of the heat sources related with disintegration of the radio-active 

elements in the thermodynamic subsystem  = + , the function  is equal to  the  function  

inside of the subsystem  and the function  is equal to function  inside of the subsystem .  
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Fig. 2.  The geometric sketch of the planetary structure 

 
 

Using the mathematical inductive method and the generalized formulation (1.53) of the first law of 
thermodynamics, we obtained [Simonenko, 2007; 2008] the evolution equation for the total energy   of 

the subsystem   (consisting of N successively  embedded to each other subsystems (geo-spheres) , , 
τE

τ Nτ 1-Nτ
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…, , , from which the subsystem =  is first upper layer (geo-sphere) of the  subsystem , and the 

subsystem  is the internal kernel of the subsystem   of the planet ( +
2τ 1τ 1τ extτ τ

Nτ τ τ τ )):  
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where  is the surface  (characterized by  the number i,  i = 1, 2, …, N-1) of the jump of the velocity 
(vector) continuum, on  which (or  only on a certain part) the velocity vector of continuum has the jump from 

the functional vector values  (having on the internal side of the surface ) up to the functional 

vector values  having on the external  side of surface 

iτ∂

)τ( iint ∂v iτ∂

)τ( iext ∂v iτ∂ . Taking into account the fundamental 
uniformity of the considered thermohydrogravidynamic approach to the planets of the Solar System, the 
evolution equation (2.30) of the total energy of the subsystem  is valid for the subsystem  of  each planet 
( +

τ τ
τ τ )  of the Solar System.   

Considering the subsystem =  of the Earth ( +τ 0,3τ 0,3τ 0,3τ ), the stress tensor  in equation (2.30)  
can be taken into account for the real physical structure [Abramov, 1993; Khain, 2003; Abramov and Molev, 
2005] of all N successively embedded to each other subsystems , , …, ,  (geo-spheres [Khain, 
2003; Abramov and Molev, 2005]). The deduction of equation (2.30) is realized strictly  mathematically in a 
general case for arbitrary symmetrical stress  tensor Т . The deduction of equation (2.30) does not suppose 
any simplifications related with suggestion of the spherical forms of the boundary  surfaces  (i = 1, 2, …, 
N-1), which delimit a different subsystems , ,…, , .  If there are no  jumps of the velocity 

(vector) continuum on the boundary surfaces 

Т

Nτ 1-Nτ 2τ 1τ

iτ∂

1τ 2τ 1-Nτ Nτ

iτ∂  then we have the equalities =)τ( iint ∂v )τ( iext ∂v  for 
each  i. In this case, we have from equation (2.30) the reduced equation (2.21).   

The equation (2.30) shows that the energy can be received from the non-stationary external (of the 
Sun, the Moon, planets, satellites of planets, midget planets, known asteroids and comets of the Solar System 
and the material objects of our Galaxy) and internal (of the Earth) gravity fields to create the jumps of the 
velocity continuum related with rotation of the geo-spheres with respect to each other and characterized by 
the slippage on the boundary surfaces  (i = 1, 2, …, N-1).    iτ∂

Taking into account the data about the continental and oceanic planetary tectonic formations 
characterized [Abramov and Molev, 2005; p. 245] by the mantle penetrated deep roots reaching the kernel of 
the Earth, the consideration of the first term in the third row of equation (2.30) gives the following  
expression (after integration of this term on the area section i∆Σ  of the deepening  crystalline planetary 
tectonic root):    

                { } ( )∫∫
Σ

Σ⋅⋅∂−∂−=Σ
i

i

∆
iiextiintibr d)τ()τ()(∆W mTmvv                       (2.31) 

for the necessary power  (in particular, of the external energy gravitational  influence), which is sufficient to 
break the considered crystalline  root in one section characterized by the area i∆Σ . It was noted [Abramov 
and Molev, 2005; p. 247] that even the gravitational and rotational momentums of forces have not destroyed 
the roots of  crystalline shields formed before the Cambrian time. This, according to equation (2.30), leads to 
the weak mobility of the crystalline shields relative to their surroundings. As a result, we obtained 
[Simonenko, 2007; 2008] (for the considered planetary tectonic formations [Abramov and Molev, 2005; p. 
245]) the impossibility of slippage of the upper mantle as a whole relative to the lower mantle of the Earth.  

Taking into account the data [Pavlenkova, 2007; p. 107] about the deep roots of the continents, we  
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derived [Simonenko, 2007; 2008] from equation (2.30)  the possibility of rotation of the upper mantle (as a 
whole) relative to the lower mantle (characterized by the slippage in the intermediate connecting  zone) 
under sufficiently powerful external energy gravitational influences if the roots of the oceanic and 
continental planetary formations does not lower below the upper mantle. We obtained [Simonenko, 2007; 
2008] from equation (2.30) that (for two data [Abramov and Molev, 2005; p. 245; Pavlenkova, 2007; p. 107] 
about the roots of continents) the mantle can rotate as a whole with the slippage on the dividing boundary of 
the mantle and the external fluid kernel. This theoretical conclusion confirmed [Simonenko, 2007; 2008]  the 
considered [Pavlenkova, 1995] suggestion about rotation of the mantle relative to the kernel. The obtained 
theoretical result is consistent with the modern data [Pavlenkova, 2007; p. 107] about the rotation of the 
mantle relative to the kernel.  

From equation  (2.30) we obtained [Simonenko, 2007; 2008] that the translational mobility of the 
upper  subsystem  =  of the Earth  (also as a separate tectonic plates and geo-blocks of the subsystem 

= ) is greatly restricted as a result of  deepened  roots of the  continental and oceanic  planetary 
formations (for two data  [Abramov and Molev, 2005; p. 245; Pavlenkova, 2007] about the roots of 
continents). According to the evolution equation (2.27) of the total energy of the subsystem , the 

restriction of the translational mobility of the upper subsystem  =  of the Earth leads to the 
intensification of  the deformational and rotational motions [Khain and Poletaev, 2007; Vikulin and 
Melekestcev, 2007; Pavlenkova, 2007; Tveritinova and Vikulin, 2007] of a separate tectonic plates and  geo-
blocks (in the subsystem ) under the external energy gravitational influences on the Earth. The 
intensification of the deformation and rotation  of a separate  tectonic plates and  geo-blocks (in the 
subsystem ) has the main role in the natural  seismic activity of the Earth [Melnikov, 2007].   

1τ extτ

1τ extτ

extτ

1τ extτ

extτ

extτ
It was shown [Simonenko, 2007; 2009; 2010] that it is easier to realize (by action of the external 

cosmic gravitational field) the rotation of the separate geo-block (weakly coupled with the surrounding geo-
blocks by means of the plastic surroundings (surrounding continuum) in the seismic zone of the Pacific 
Ring) than to split the geo-block by means of formation of the main line flat fracture. Using  the similar 
reasoning  (as for foundation of the stated above result of the monographs [Simonenko, 2007; 2009; 2010]) 
to the tectonic plate coupled by means of the plastic surroundings with the adjacent tectonic plates in the 
upper mantle, we established [Simonenko, 2007; 2009; 2010] that it is easier to realize (by action of the 
external cosmic gravitational field) the rotation of the separate tectonic plate (weakly coupled with the 
adjacent tectonic plates by means of the plastic surroundings) than to split of the tectonic plate by means of  
formation of the new main line flat tectonic fracture. We deduced [Simonenko, 2009; 2010]  also that it is 
easier to realize (by action of the external cosmic gravitational field) the rotation of the mantle (as a whole 
relative to the fluid kernel with the slippage on the boundary of the kernel and the mantle of the Earth) than 
to split the mantle of the Earth by means of the new global tectonic fracture into two equal parts in the 
different sides of the main secant plane intersecting the centre of the Earth. This result is the base of the 
initial consideration of the model of the non-fragmentary geo-spheres of the planet. It was concluded 
[Simonenko, 2007; 2009; 2010]  that the slippage of the mantle on the surface of the fluid  kernel, 
deformation and rotation of the separate tectonic plates and geo-blocks  relative to each other are the main 
non-equilibrium tectonic processes (mechanisms), which relax the external cosmic energy gravitational 
influences on the Earth (and on the planets of the Solar System).  

Taking into account two estimates (180 million years [Zhirmunsky and Kuzmin, 1988] or 200 million 
years [Каzаncev, 2002; p. 10]) for the time period of circulation of the Solar  System around the center of 
our Galaxy and also the established unique period of 100 million years  [Hofmann, 1990] of the maximal 
endogenous activity of the Earth [Morozov, 2007; p. 496], we concluded [Simonenko, 2007; 2009; 2010] 
that the  time period of  200 million years corresponds exactly to the one circulation of the Solar System  
around  the  center of our Galaxy. In the frame of the considered thermohydrogravidynamic N-layer  model 
of the non-fragmentary geo-spheres of the Earth (the planet of the Solar System), the time period of 200 
million years corresponds really to the established unique period of 100 million years  [Hofmann, 1990] of 
the maximal endogenous activity of the Earth. This correspondence is deduced rigorously from the evolution 
equation:    
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for  the sum   of the total  macroscopic kinetic energy  and the total macroscopic potential 

(gravitational) energy    of the subsystem  (of the Earth or the planet of the Solar System) consisting 

from two subsystems (of the Newtonian compressible continuum): the whole kernel  and the whole 

mantle  (surrounding the kernel)), which can slip (as a whole) on the boundary surface  (the surface 

of the kernel ) related  with the tangential jump of the continuum velocity. Here  (apart from the usual  
designations)   is the external unit normal vector of the  surface  

ττ πK + τK

τπ τ

intτ

extτ iτ∂

intτ
n τ∂  of the subsystem   of the Earth (the 

planet (

τ
ττ+ ) of the Solar System),  is the external unit normal vector of  the internal  surface  im− iτ∂  of 

the mantle ,  is the external unit normal vector of the surface extτ im iτ∂  of the kernel ,  intτ )τ( iext ∂v  is 

the vector of the continuum velocity on the  external side of the surface  iτ∂  inside the mantle ,  

 is the vector of the continuum velocity on the internal  side of the surface    in the kernel 

. We remind that  (in  equation (2.32)) is the total gravitational  potential taking into account the 

internal gravitational field (created by the subsystem 

extτ

)τ( iint ∂v iτ∂

intτ ψ
=τ extτ + ) and the external gravitational field 

created by the whole external surroundings of the subsystem 
intτ

=τ extτ + : the subsystem intτ τ  of the planet 

( ττ+ ), the Solar System and our Galaxy.  
If the period of variations of the potential of the external gravitational field (acting on the composite 

subsystem +  of the planet (=τ extτ intτ ττ+ )) is equal to ( ) then the same period of  time ( )  

will characterize the periodic variations of the rate of strain  tensor  and the divergence  of the 

velocity vector  of the continuum motion  inside of the  subsystem 

egT τ egT τ

ije vdiv
v =τ extτ +  of the planet (intτ ττ+ ). 

Then,  according to equation  (2.32), the  period  of variations of the total macroscopic kinetic and 
gravitational energies of the subsystem =τ extτ +  of the planet (intτ ττ+ )  (as a result of the irreversible 
dissipation of the macroscopic kinetic energy described by the second and the third terms in the right-hand  

side of equation  (2.32))  is equal to egT
2
1

( )  as a consequence that the quadratic functions   and  

have the  time period 
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The last term  
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in the right-hand side of equation (2.32) changes periodically owing to the periodic realignments of the 
structure of the Solar System during circulations of the Solar System (around the centre of our Galaxy) 
characterized by the time period of 200 million years, which is exactly two times larger than the time period  
100 million years  [Hofmann, 1990] of  the maximal endogenous activity of the Earth [Morozov, 2007; p. 
496]. These realignments of the structure of the Solar System must induce the periodic changes 
(characterized by the time period of 200 million years) of the gravitational field of the Sun and the planets of 
the Solar System influencing on the Earth.   
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We concluded [Simonenko, 2007; 2008; 2009; 2010] that the established time period of 100 million 
years [Hofmann, 1990] of the maximal endogenous activity of the Earth is the result (according to the 
equation (2.32)) of the periodic changes (characterized by the time period of 200 million years) of the 
potential of the gravitational field (of the Solar System and our Galaxy) influencing on the Earth considered 
in the frame of the Solar System as the cosmic material object  moving  around the center of our Galaxy. It 
was also concluded [Simonenko, 2007; 2008; 2009; 2010] that the same time period of 100 million years 
must characterize the maximal endogenous activities of all planets (and the satellites of the planets) of the 
Solar System.  

  
     

2.3.2. Thermohydrogravidynamic translational-shear-rotational  N-layer 
tectonic model of the fragmentary geo-spheres of the 

Earth (of a planet of the Solar System) 
 

Following the monographs [Simonenko, 2007; 2008; 2009; 2010], we consider the 
thermohydrogravidynamic translational-shear-rotational  N-layer tectonic model of the fragmentary geo-
spheres of the Earth (of a planet of the Solar System) taking into account the convection in the lower geo-
spheres of the Earth (of the planet), the solar radiation, the disintegration of the radio-active elements,  the 
density differentiation, the translational, rotational, deformational and compressible movements of the 
tectonic plates, the creation of the new planetary fractures induced by the energy gravitational influences of 
the Solar System and our Galaxy. In accordance with the adopted conception [Abramov, 1993; Vikulin, 
2003; Khain, 2003;  Abramov and Molev, 2005] about the structure of the upper mantle of the Earth, we 
shall consider that the upper  subsystem   of a planet (of the terrestrial group) consists of a separate  geo-
fragments: tectonic plates and geo-blocks, which we shall designate as geo-blocks to not reduce the 
generality of the considered  thermohydrogravidynamic approach. Consider an arbitrary j-th geo-block    

of the first upper subsystem  of the planet  (for example, the Earth). If the geo-block  slips with the 

jump of the continuum velocity relative to a plastic layer 

extτ

1jτ

extτ 1jτ

1jτ  surrounding the geo-block , then it gives 
[Simonenko, 2007; 2008; 2009; 2010] the additional  term in the right-hand side of equation  (2.27):  

1jτ

                                  { } ( )∫∫
∂

Σ⋅⋅∂−∂
1j

1j

τ
1j1jext1jint d)τ()τ( nTnvv ,                                   (2.34) 

where    is the  boundary surface of the geo-block , 1jτ∂ 1jτ )τ( 1jint ∂v  is the continuum velocity  on the 

boundary surface   inside the geo-block , 1jτ∂ 1jτ )τ( 1jext ∂v  is the continuum velocity (of the plastic layer 

surrounding the geo-block ) on the boundary surface 1jτ 1jτ∂  inside the plastic layer,  is the  external 

unit  normal  vector of the  surface  . Considering the geo-block  surrounded by the plastic layer 

around the lateral  and the lower boundary surfaces, we refer the plastic layer below the geo-block  to the 

subsystem  in  the considered  model of the  subsystem .  

1jn

1jτ∂ 1jτ

1jτ

extτ extτ

Consider the general case. We assume that for  geo-blocks (plates)  (j = 1, 2, …, ) of the 

first subsystem (layer or the geo-sphere) =  of the Earth  there are  the differences  of the continuum 

velocities on the boundary  surface   of  each  (j = 1, 2, …, ) geo-block  (j = 1, 2, …, ) and 

in the plastic layer  directly attached to the boundary

1N 1jτ 1N
1τ extτ

1jτ∂ 1N 1jτ 1N

1jτ∂ . It is necessary [Simonenko, 2007; 2008; 2009; 
2010] for this case to add the additional term (in the right-hand side of equation (2.27)) consisting of the sum 
of separate components (2.34) for each geo-block  characterized by the number j  (j = 1, 2, …, ):  1jτ 1N

                   .                                     (2.35) { } (∑ ∫∫
= ∂
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1j τ
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Thus, if the subsystem consists of  separate geo-blocks  surrounded  by the plastic layers then the 
equation  (2.27) can be rewritten as follows [Simonenko, 2007; 2008; 2009; 2010] : 

extτ 1N 1jτ
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where  is the upper subsystem  containing of   geo-blocks   (j = 1, 2, …, ) surrounded by the 

plastic layers included completely to the subsystem . The macroscopic kinetic energy , the 

microscopic (molecular) internal energy  and the potential gravitational energy  of the subsystem 

  consist of the corresponding sums of the energies of a separate geo-blocks and the corresponding 
energies of all plastic layers. The energies of a separate geo-blocks (for the great sizes of geo-blocks and 
narrow plastic layers) are much greater than the energies of plastic layers, which can be neglected. However, 
we cannot neglect the last term (presented by the sum in the right-hand side of  equation  (2.36)) since it 
expresses the power of energy expenses needed for the slippage of all  geo-blocks  (j = 1, 2, …, ) 
relative to its plastic surroundings. This term is very significant in the total energy balance. The  equation 
(2.36) shows that the energy sources of the slippage of the geo-blocks   (j = 1, 2,  …, ) of the upper 

subsystem =  relative to the plastic surroundings (and also of the translational motions, rotations and 

deformations of the geo-blocks) are the non-stationary gravitational field (in the subsystem ),  the 

heating related with disintegration of radio-active elements (in the subsystem ), the heat flux from the 
upper boundary of the (situated below) second layer (the subsystem)  and the works of the stress forces  
on the upper boundary  and on the lower boundary 

extτ 1N 1jτ 1N

extτ
extτK

extτU
extτπ

extτ

1jτ 1N

1jτ 1N
1τ extτ

extτ

extτ

2τ
τ∂ iτ∂  of the subsystem =  of the planet ( +1τ extτ τ τ ). 

In the following Subsection we consider the energy aspects related with the fracture formation in the 
arbitrary geo-block  defined by the index j in the  range from j = 1 up  to j = .  1jτ 1N

 
 
 

2.3.3. The universal thermohydrogravidynamic theory of formation of the planetary 
 fractures in the frame of the generalized differential formulation of the first  

law of thermodynamics and the thermohydrogravidynamic  
translational-shear-rotational N-layer tectonic model of the fragmentary (consisting of geo-blocks) 

geo-spheres of the Earth (of the planet of the Solar System) 
 
Following the monographs [Simonenko, 2007; 2008; 2009; 2010], we consider the universal 

thermohydrogravidynamic theory of formation of the planetary  fractures in the frame of the generalized 
differential formulation (2.21) of the first law of thermodynamics and the thermohydrogravidynamic 
translational-shear-rotational N-layer tectonic model of the fragmentary (consisting of geo-blocks) geo-
spheres of the Earth (of the planet of the Solar System). It was shown [Simonenko, 2007; 2008; 2009; 2010] 
that for the Pacific Ring (characterized by the  presence  of the plastic  layers around the geo-blocks) it is 
more probably (from the energy viewpoint) to realize the rotation of the geo-blocks than to break up the geo-
blocks related with formation of the new main line flat fractures. The process of formation of the main line 
flat fractures can be energetically more probable in reality with respect to the geo-blocks rotation for geo-
blocks powerfully coupled between each other (as for solid crystalline rocks).  
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The splitting of the geo-block  (of the first layer (geo-sphere) =  of the Earth) can be realized  
in reality by three possible variants: by formation of one or several main line flat fractures splitting the geo-
block  into two or more number of parts, by formation of one or several twisted  surfaces of  fractures 
transient or not transient into the closed surfaces, and also by combination of one or several main line flat 
fractures with one or several twisted surfaces of fractures transient or not transient into the closed surfaces.  

1jτ 1τ extτ

1jτ

We consider now two (evaluated in monographs [Simonenko, 2007; 2008; 2009; 2010]) energy  
thermohydrogravidynamic approaches (describing the formation of the main line flat fracture of the geo-
block and rotation of the geo-block  surrounded by the plastic layer) and also three possible more general and  
pointed  above  variants of the geo-block destruction within the framework of the universal energy  
thermohydrogravidynamic approach describing the formation of an arbitrary breaking (to pieces) surface in 
the chosen geo-block .  1jτ
 Consider the energy aspect of the process of the fracture formation on the arbitrary surface   

(flat or twisted  and  finally,  possibly, becoming closed) in the chosen  geo-block . There is the 
possibility [Simonenko, 2007; 2008; 2009; 2010] to consider the processes of the fracture formation of 
various forms  within the framework of the universal energy thermohydrogravidynamic approach. To use the 
energy thermohydrogravidynamic approaches [Simonenko, 2007; 2008; 2009; 2010] for the breaking (to 
pieces) surfaces of various forms it is necessary to adopt the following terminology and consider the 
additional geometric development.  

)τ(F 1j1j

1jτ

Let us consider in beginning the formation of  one arbitrary  fracture surface (the continuum break) 
 in the chosen geo-block   confined  by the external surface )τ(F 1j1j 1jτ 1jτ∂ .  If the surface  is closed 

initially then we have the functional values of the continuum velocities vectors  and 

 on the inner side of the surface  and on the  outer side of the  surface , 

respectively. Writing the evolution equations of the total energy for the internal subsystem  (situated 

inside of the surface ) and for external  subsystem  (situated between the surfaces  

and ) and then adding these equations, we  obtained (similarly as it was made in  Subsection 2.3.1 with 

equations (2.27) and  (2.28) for the total  energy of two  combined subsystems  and ) the evolution 

equation [Simonenko, 2007; 2008; 2009; 2010] of the total energy of the geo-block  consisting of two 

interacting subsystem  and : 
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where  is the continuum velocity vector on the  inner  side   of the surface  in the 

subsystem ,  is the continuum velocity vector on the  outer side of  the surface 

 in the subsystem ,  is the external unit normal vector of the surface  confined the 

geo-block ,  is the element of area of the surface 
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normal vector of the surface ,  is the space-time density of the heat sources (in the geo-block 
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1jτ ) related with disintegration of radio-active elements.  

Considering  the   formation  of  the   integer  number     of  uncrossed   between   itself   closed  

breaking (to pieces) surfaces  (i = 1, 2,….,  )  in the  geo-block , we  modified [Simonenko, 
2007; 2008; 2009; 2010]  the equation (2.37) by the change of the term presented in the third row by the 
following sum:  

cl
1jk

i1j1j ))τ((F cl
1jk 1jτ
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where the index i designates the same values as in equation  (2.37), only on the  surface . As a 
result (by using the mathematical inductive method), we obtained  [Simonenko, 2007; 2008; 2009; 2010] the 
evolution equation (instead of equation (2.37))  for description of the total energy of the geo-block  

during formation of the integer number  of uncrossed between  itself  closed breaking (to pieces) surfaces  

 (i = 1, 2,….,  ):    

i1j1j ))(τF(

1jτ
cl
1jk

i1j1j ))τ((F cl
1jk

           ( )π
1j1j1j τττ UK

dt
d

++  = dt
d
 Vρdψu

2
1

1jτ

2∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ ++v =        

                = +                 (2.39)  ( ){ }∫∫
∂

Ω⋅−⋅⋅
1j

1j

τ
j1qj1 d)( nnJTnv

  + +  { } (∫∫∑ Σ⋅⋅−
=

i1j1j

i1j1j

cl
1j

)(τF
))(τF(i1j1ji1j1jexti1j1jint

k

1i
d))(τF())(τF())(τF( mTmvv )

                    + Vρd
t
ψ

1jτ
∫∫∫ ∂

∂
+ .         Vρde

1j

1j

τ
τ∫∫∫

Let us consider now the formation of the unclosed breaking (to pieces) surface  inside of the 

geo-block  assuming that the surface  do not reach  the boundary surface  of the geo-block 

. It is possible in this case to close mentally the surface  as a result of the conceivable additional 
surface supposing naturally the equal values of the continuum velocities on the different sides of the 
conceivable additional surface. We obtained  [Simonenko, 2007; 2008; 2009; 2010] in this case the evolution 
equation for the total energy: 
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which is analogous to equation (2.37) with the  corresponding to the considered case designations. The 
question concerning to the definition of the “internal” and “external” parts of the unclosed breaking surface 

 and the corresponding continuum velocities  and , respectively, 
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on the “internal”  and “external” parts of the unclosed surface  is decided by the simple  agreement: 

by closing mentally unclosed breaking surface  by the conceivable additional surface (on which 
there is no the jump of the continuum velocities), let us agree that this additional surface together with the 

surface  should contain the mass center of the geo-block . Then naturally to name by the 
“internal” part of the formed closed surface the side of this surface, inside of which is found the mass center 
of the considered geo-block.   
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Considering the formation of the integer number  of unclosed uncrossed between itself breaking 

surfaces  ( l = 1, 2,….,  ) in the geo-block , we also close mentally each surface 

 to obtain the closed surface (together with the conceivable additional surface for each ) 

containing the mass center of the geo-block . In this case we modify the equation (2.40) by the change of 
the term situated in the third row by the sum. As a result, we obtained [Simonenko, 2007; 2008; 2009; 2010]  
the  following evolution equation (by using the  mathematical inductive method) for the total energy of the 

geo-block  having   unclosed uncrossed between itself  breaking surfaces  ( l = 1, 2,….,  

):  
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where the index  denotes the same values as in equation  (2.40) only on the surface  for each . 

It is clear that if some surface  (for certain ) reaches the surface 
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l))(τF( 1j1j l 1jτ∂  of the geo-block  then 

the split geo-block  gives two separate geo-blocks. We can consider in this case separately each split part 

of the geo-block .  
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Using the previous results and designations, we deduced [Simonenko, 2007; 2008; 2009; 2010] the 

evolution equation (using the mathematical inductive method) for the total energy of the geo-block  during 

the  simultaneous formation (in the geo-block ) of the integer number  of uncrossed between itself 

closed breaking surfaces  (i = 1, 2,….,  ) and  the integer number   of unclosed  uncrossed 

between itself breaking  surfaces  ( = 1, 2,….,  ): 
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According to the evolution equation (2.42) for the total energy of the geo-block ,  the real  

realization in the geo-block  of the integer number  of uncrossed  between itself closed breaking 

surfaces  (i = 1, 2,….,  ) and the integer  number  of unclosed  uncrossed  between itself 

breaking  surfaces  ( l = 1, 2,….,  ) requires the necessary energy power, which can realize 

the formation of fractures in the geo-block .  
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The process of the fractures formation (destruction) in the geo-block  (according to the evolution 

equation (2.42)) is defined by the energy powers (available for given geo-block ) of different destructive 
energy influences (sources). These energy sources (according to the evolution equation (2.42)) for given geo-
block  are: the total non-stationary gravitational fields (the external cosmic and the planetary), the internal 
heat related with the disintegration of the radio-active elements,  the heat flux from the  upper boundary of  
the situated below second layer (subsystem)  and the work of stress forces on the  surface of the geo-
block . The role of the external non-stationary gravitational field (according to the evolution equation 
(2.42)) as the source of formation of fractures is increased by the fact [Abramov, 1993] that the gravitational 
energy dominates among all others energies for the Earth.  It was also shown earlier [Avsjuk, 1996;  Avsjuk 
and Suvorova, 2007] that the global evolution of the Sun-Earth-Moon system is determined by the non-
stationary gravitational field.  
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It is clear that weak external non-stationary influences (including the gravitational influence) on the 
considered geo-block  cannot realize the fractures or can realize only one fracture from the considered 

closed or unclosed fractures of the geo-block  since the formation of fractures requires the sufficient 

power of the external energy influence on the considered geo-block . Obviously, the processes of 
formation of fractures in the Earth’s crust occur in reality in accordance with the formulated variational 
principle [Simonenko, 2007; 2008; 2009; 2010]: the processes of the fractures formation in the Earth’s crust 
occur on the surfaces, where the forced energy influences are sufficiently intense to form the fractures 
formation.  

1jτ
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Considering the total ensemble of geo-blocks  (j =1, 2, …, ) of the first upper geo-sphere 

 of the planet (for example, the Earth) and using the set of equations (2.42) for j =1, 2, …, , we 
deduced [Simonenko, 2007; 2008; 2009; 2010]  that the processes of destruction and rotation of the geo-
blocks in the upper geo-sphere  (or in the some subsystem of the upper geo-sphere 

1jτ 1N
=1τ extτ 1N

=1τ extτ =1τ extτ ) 
should be initiated (owing to the specific characteristics of the geo-blocks structure and the properties of the 
plastic surroundings of the geo-blocks)  by the general increase ( 0tψ/ >∂∂ ) of the gravitational potential 
and by the increase of intensity of the others earlier established factors of the fracture formation. It was 
concluded [Simonenko, 2007; 2008; 2009; 2010] that the general increase of the gravitational potential 
( ) is related with the general increase of the seismotectonic activity (associated with the partial 
or total splitting of the separate geo-blocks, by the geo-blocks rotation and by the slippage of the separate 
adjacent geo-blocks) before the strong earthquakes (characterized by the simultaneous slippage, splitting, 

0tψ/ >∂∂



rotation of the several geo-blocks coupled by the plastic layers) and before the global planetary cataclysms 
characterized by the slippage along the weakened global planetary fractures (such as the  “Atlantiok” zone 
[Abramov, 1997; p. 70] penetrating the Eurasian continent from the Pacific Ocean  to the Atlantic Ocean and 
the Great Britain, the rotation of the upper mantle (as a whole) relative the lower mantle characterized by the 
slippage in the intermediate connecting zone [Pavlenkova, 2007;  p. 107],  and by formation of the new 
global planetary fractures penetrating the Earth’s continents as a whole. The stated theoretical conclusion 
[Simonenko, 2007; 2008; 2009; 2010]  is in agreement with the early established [Keylis-Borok and 
Malinovskaya, 1964] and exceptionally significant [Richter, 1964] regularity related with the general 
increase of seismic activity before the strong earthquakes.  

Thus, we have demonstrated the established [Simonenko, 2007; 2008; 2009; 2010] exceptionally 
significant role of the external cosmic non-stationary gravitational field (changing the figure of the Earth and 
the gravitational field of the Earth acting on the considered geo-block ) for formation of fractures 
realizing the tectonic processes in the Earth’s crust. The stated [Simonenko, 2007; 2008; 2009; 2010] 
conclusion confirmed the Khain’s suggestion that the movements along the weakened planetary fractures 
“can occur owing to the influence of the astronomical factors” [Khain, 1958; p. 138].  

1jτ

In the following Subsection we shall present the evaluated [Simonenko, 2007; 2008; 2009; 2010] 
deterministic cosmic energy gravitational influences on the Earth of the planets of the Solar System and the 
Moon, and also the new evaluations of the very significant deterministic cosmic energy gravitational 
influences on the Earth of the Sun owing to the gravitational interaction of the Sun with the outer large 
planets (mainly due to energy gravitational influences of the Jupiter and the Saturn on the Sun). 
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3. THE COSMIC GEOPHYSICS 
 
 

3.1. The energy gravitational influences on the Earth of the planets of the Solar System 
 

3.1.1. The instantaneous energy gravitational influences on the Earth of the planets of the Solar 
System in the approximation of the elliptical orbits of the planets  

 
 

We consider the movement of the Earth   and the inner (or outer) planet  around the Sun  in 

the approximation of the elliptical orbits of the planets. The planets revolve in the ecliptic plane  (see 
Fig. 4). To obtain the expression for the energy gravitational influences on the Earth (in the second 
approximation) of the inner and the outer planets, we consider the mass center of the Sun located at the fixed 
point O of the origin of the coordinate system. The mass center  of the Earth , the mass center O of the 
Sun and the mass center  of the inner (i=1, 2) and the outer (i=4, 5, 6, 7, 8, 9) planet  are located on the 
direct coordinate axis at a certain initial time moment t = 0  characterized by the minimal distance 
between the mass center  of the inner (i=1, 2) and the outer (i=4, 5, 6, 7, 8, 9) planet  and the mass 

center  of the Earth . The fixed mass center O of the Sun is considered as the right focus of the 

elliptical orbits of the inner (i=1, 2) planet , the outer (i=4, 5, 6, 7, 8, 9) planet  and the  Earth .  

зτ iτ 0,0τ
XZ

 зC зτ
 iC iτ

X
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iτ iτ зτ
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Fig. 4. The geometric sketch of circulation of the outer planet  (the Mars or the Jupiter, the Saturn, the 
Uranus, the Neptune and the Pluto)  and the Earth   around the mass center O  of the Sun 
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We have the following relations: 
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                                          (t))cose(1
p(t))(r

33

3
33 ϕ

ϕ
+

=                                                                        (3.2)  

for the distance (t))(r ii ϕ  between the mass center O of the Sun and the mass center  of the inner (i=1, 

2) or the outer (i=4, 5, 6, 7, 8, 9) planet  and for the distance 
 iC

iτ (t))(r 33 ϕ  between the mass center O of the 

Sun and the mass center  of the Earth . Here  and  are the focal parameter and the eccentricity, 

respectively, of the elliptical orbit of the inner (i=1, 2) and the outer (i=4, 5, 6, 7, 8, 9) planet ,   and 

 are the focal parameter and the eccentricity, respectively, of the elliptical Earth’s orbit. We have  

 зC зτ ip ie

iτ 3p

3e
0)0(i =ϕ  (i=1, 2, 3, 4, 5, 6, 7, 8, 9) for the initial time moment t = 0. 

We shall consider the gravitational potential ) (t))(r t,ext, int, ,(Cψ 33ЗЗi ϕ created by the inner 

(i=1, 2) or the outer (i=4, 5, 6, 7, 8, 9) planet  in the mass center  (of the Earth ) characterized by 

the distance  
iτ  зC зτ

(t))(r 33 ϕ  from the mass center O of the Sun:  

                         ) (t))(r t,ext, int, ,(Cψ 33ЗЗi ϕ   ,
 t),C ,(Cr

М
γ-=

iЗЗi

i
                                        (3.3)  

where  is the distance between the mass center  of the Earth  and the mass center   

of the inner (i=1, 2) or the outer (i=4, 5, 6, 7, 8, 9) planet . We find the distance  for the 
outer (i=4, 5, 6, 7, 8, 9) planet  from the following relation: 

 t),C ,(Cr iЗЗi  зC зτ  iC

iτ  t),C ,(Cr iЗЗi

iτ

  + -( ) =2
iЗЗi  t),C ,(Cr ( )2

33 (t))(r ϕ ( )2ii (t))(r ϕ (t))(r 33 ϕ ( )(t)-(t) (t))cos(r i3ii ϕϕϕ ,              (3.4) 
which is valid also for the inner (i=1, 2) planet  owing to the equality iτ

( ) ( )(t)-(t) cos(t)-(t) cos 3ii3 ϕϕϕϕ = . Consequently, the relation (3.3) can rewritten as follows: 

                                    ) (t))(r t,ext, int, ,(Cψ 33ЗЗi ϕ =    

             =
( ) ( ) (t))-(t))cos(()r(r2(t))(r)(r

γM

i3ii33
2

ii
2
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i

ϕϕϕϕϕϕ −+
− .                                  (3.5)  

We obtained [Simonenko, 2009; 2010] the expression for the partial derivative 

) (t))(r t,ext, int, ,(Cψ
t 33ЗЗi ϕ
∂
∂

 of the gravitational potential  (3.5): 

                                         ) (t))(r t,ext, int, ,(Cψ
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where the distance (t))(r ii ϕ  (between the mass center O of the Sun and the mass center  of the inner 

(i=1, 2) or the outer (i=4, 5, 6, 7, 8, 9) planet ) and the distance 
 iC

iτ (t))(r 33 ϕ  (between the mass center O of 

the Sun and the mass center  of the Earth ) are given by the relations (3.1) and (3.2), respectively.  зC зτ



The expression (3.6) is reduced to the expression [Simonenko, 2007] 
                                                                                                            

       23
ЗiОiОЗ

2
Оi

2
O3

ЗiiОiОЗi
ЗЗiЗЗi )t]ω-cos(ωR2R-R[R

)tω-sin(ωωRRγMext),(Cψ
t

int),(Cψ
t +

=
∂
∂

=
∂
∂

                           (3.7)  

under the following conditions: =0,  =0 and  ie 3e ii ω(t)/dtd =ϕ  corresponding to the circular orbits of 

the planet  (i=1, 2, 4, 5, 6, 7, 8, 9) and the Earth . The obtained expression (3.6) for the partial 

derivative 

iτ зτ

) (t))(r t,ext, int, ,(Cψ
t 33ЗЗi ϕ
∂
∂

 generalizes the expression (3.7) corresponding to the 

circular orbits of the  planet  (i=1, 2, 4, 5, 6, 7, 8, 9) and  the Earth  by taking into account the 

eccentricity  of the elliptical orbit of the inner (i=1, 2) or the outer (i=4, 5, 6, 7, 8, 9) planet  and the 

eccentricity  of the elliptical orbit of the Earth . 

iτ зτ

ie
iτ

3e
зτ

The first term in the figured brackets of the expression (3.6)  gives the principal contribution to the 

partial derivative ) (t))(r t,ext, int, ,(Cψ
t 33ЗЗi ϕ
∂
∂

. The expression (3.6)  contains the additional two 

small terms (vanishing at  and ) related with the contribution to the  partial derivative 0ei → 0e3 →

) (t))(r t,ext, int, ,(Cψ
t 33ЗЗi ϕ
∂
∂

 of the eccentricities  and   of the elliptical orbits of the planet 

 (i=1, 2, 4, 5, 6, 7, 8, 9) and  the Earth , respectively.  

ie 3e

iτ зτ
The combined maximal contribution of these additional two terms to the partial derivative 

) (t))(r t,ext, int, ,(Cψ
t 33ЗЗi ϕ
∂
∂

 is of the order  
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⎜
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⎛

∂
∂ )int  ,(Cψ
t

max)e,O(e ЗЗi3i                                                              (3.8)  

for the inner (i=1, 2) planet , and of the order  iτ

                             ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂ )ext  ,(Cψ
t

max)e,O(e ЗЗi3i                                                              (3.9)  

for the outer (i=4, 5, 6, 7, 8, 9) planet . Consequently, the contribution of the first term in the figured 

brackets of the expression (3.6)  is  times larger than the contribution of the additional two 

new terms related with the eccentricities  and   of the elliptical orbits of the planet  (i=1, 2, 4, 5, 6, 

7, 8, 9) and  the Earth , respectively.   Using the maximal eccentricity 

iτ
( 3i ,1/ee/1O )

ie 3e
iτ

зτ 206.0e1 =  of the Mercury’s orbit, 
we have that the contribution of the first term in the figured brackets of the expression (3.6) is approximately 
5 times larger than the  contribution of the additional two new terms (in the figured brackets of the 
expression (3.6)) related with the eccentricities 206.0e1 =  and  017.0e3 =  of the elliptical orbits of the 

Mercury  and  the Earth , respectively. We have that the first term (in the figured brackets of the 
expression (3.6)) is significantly larger than the  contribution of the additional two new terms for the others 
planets (of the Solar System) having the small eccentricities of the elliptical orbits. 
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Thus, the obtained [Simonenko, 2007; 2009; 2010]  evaluation (in the frame of the first approximation 
of the circular orbits of the planets) of the relative maximal energy gravitational influences on the Earth (of 
the planets of the Solar System) may be considered as the first sound approximation for the  evaluation of  
the relative maximal energy gravitational influences of the inner (i=1, 2) and the outer (i=4, 5, 6, 7, 8, 9) 
planets on the Earth.  We present in Subsection 3.1.2 the obtained [Simonenko, 2007; 2009; 2010]  

evaluation of  the maximal positive value int),(Cψ
t

max ЗЗi∂
∂

 (of the partial derivative int),(Cψ
t

 ЗЗi∂
∂

of 
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aximal planetary instantaneous energy 
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 Following the monograph [

inner planet  around the Sun  in the first approximation of the circular orbits of the planets. The 
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Fig. 5. The initial (t=0) planetary configuration characterized by the opposition  of the inner planet  (the 

Mercury or the Venus) and the Earth 

gra  зC  

3.1.2. The evaluation of the relative m
in the approxim

circular orbits  of the planets of the Solar System 
 
 

Simonenko, 2007], we consider the movement of the Earth зτ  and the 

i 0,0

planets revolve in the ecliptic plane XZ  (see Fig. 5 and Fig. 6). The mass center of the Sun is located at the 
fixed point O f the origin of the c rdinate system. The mass center  зC  of the Earth, the mass center O  of 
the Sun and the mass center  iC  of the inner planet iτ  are located on the direct coordinate axis X  at a 
certain initia time moment t=0 characterized by the minimal distance between the Earth and the inner planet 

iτ  (see Fig. 5).  
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We have the expressions for the angles  iφ  and з φ   
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which describe the positions of the  mass centers of the pla
 

                                                     

net iτ  and the Earth зτ  during the time t.  

 We shall consider the gravitational potential int ,(Cψ ЗЗi   )

)(Cd
Мγ-=int) ,(Cψ

ЗЗi

i                                                                  (3.12)  

he mass center of the Ea

mass center  of the inner planet  and the mass center   of the Earth (see Fig. 7) from the following 

2
О

n (3.12) can be rewritten as follows [Simonenko, 2007]: 
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Fig. 6. The initial planetary configuration of the outer planet  (the Mars or the Jupiter, the Saturn, the 

Uranus, the Neptune and the Pluto) and the Earth 

r e partial derivative

(CψЗi .                                             (3.14)  
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We derived [Simonenko, 2007] the expression fo th  int),(Сψ
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of the gravitational 

potential (3.14):  
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which reduces to  zero for the time moments n
)T-(T
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2
1)i,3(t
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iτ

 (for i = 1, 2; n = 0, 1, 2,…), when the 

mass centers of the Sun, the Earth and the  inner  planet  are located on the direct line.  
ration of the Earth 

and th

       os(ωR iЗОiОЗОiO3Зi3 .                                                (3.16)  

l created by the outer planet  at the point 

Let us consider Fig. 8 for the Earth and the outer planet iτ . We have (for configu
e outer planet iτ  shown on Fig. 8) the expression for the distance )(Cd ЗiЗ  between the mass center 

iC  of the planet iτ  and the mass center 3C  of  the Earth: 

                                 cR2R-R)(Cd 222 += )tω-
The gravitational potentia  (for configuration shown on Fig. 8)  iτ 3C
is given by the following expression: 
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 We derived [Simonenko, 2007] the expression of the partial derivative ext),(Cψ
t ЗЗi∂
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 of the 

           

expression (3.17):                     
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the Earth in the considered first approximation of the circular orbits of the planets. To evaluate the relative 
energy gravitational influence of the inner planet τi (the Mercury or the Venus) at the  mass center ЗC  of the 

Earth, we considered [Simonenko, 2009; 2010]  the ratio )Cf(i, 3  of the maximal positi  value ve
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We obtained [Simonenko, 2009; 2010]  from expression (3.19) the obvious value = 1  for the )Cf(1, 3

Mercu nenko, 2ry 1τ  (i = 1).     Using the formula (3.19) for the Venus (i = 2), we calculated [Simo 009; 2010]  

the numerical value  )Cf(2, 3 =37.69807434 for the following numerical values [Zhirmunsky and Kuzmin, 
1990]: the mass МM = 0.06М3 of the Mercury, where  МЗ is the mass of the Earth; the mass МV = М2 = 
0.82МЗ of the Venus;  the time period ТЗ = 365.3 days of the Earth’s circulation around the Sun; the time 
period ТM = 88 days   of the Mercury’s circulation around the Sun; the time period ТV = Т2 = 224.7 days of 
the Venusian circulation around the Sun;  the average radius ROM = RO1 = 57.85 ·106 km of the Mercury’s orbit 
around the Sun; the average radius ROЗ = 149.6 ·106  km of the Earth’s orbit and  the average radius ROV = RO2 
= 108.1·106 km of the Venusian orbit around the Sun. The calculated value )Cf(2, 3 =37.69807434 means that 

the power of the maximal energy gravitational Venusian influence (on the u s at the mass center 3C  of  nit mas

the Earth) is )Cf(2, 3 =37.69807434  times larger than the power of the maximal energy gravita nal tio
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influence of the Mercury (on the unit mass at the mass center 3C  of  the Earth). 
To evaluate the relative energy gravitational influence the Earth of theon  outer planet τi  at the  mass 

center ЗC  of the Earth, we considered [Simonenko, 2009; 2010]   the ratio )Cf(i, 3  (for i = 4, 5, 6, 7, 8, 9) 

of the ximal value maxma Зiψ
t∂
∂

(CЗ, ext) of the partial derivative Зiψ
t∂
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(CЗ, ext) of the gravitational 

potential Зiψ (CЗ, ext) (crea the outer planet τted by oi  at the mass center f  the Earth) and the maximal  3C  
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ax
∂
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 of the gravitational potential 
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t
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t
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∂
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∂  .   ( 9 8, 7, 6, 5, 4,i = )                                       (3.20) 

Using the formula (3.20), we calculated [Simonenko, 2009; 2010]  the following numerical values:  

0.246010

used the f rmunsk ss

)3 =0.67441034 (for the Mars 4τ ,  i = 4), )Cf(5, 3 =7.41055774 (for the Jupiter 5τ , i = 5), )Cf(6, 3 = 

09 (for the Saturn 6τ ,  = 6), ) =0.00319056 (for the Ura s 7τ , ), 

)Cf(8, 3 =0.00077565 (for the Neptune 8τ , i = 8) )C9, 3  = 3.4813·10

Cf(4,
i Cf(7, 3 nu i = 7

 and  f( -8  (for the Pluto , i = 9). We 
ollowing additional planetary numerical values [Zhi y and Kuzmin, 1990]: the ma  М

9τ
МАRS = М4 

= 0.11МЗ  of the Mars,  the time period ТМАRS = Т4 = 687 days  of the Mars circulation around the Sun, the 
average radius RОМАRS = RО4 = 227.7·106 km of the Mars’orbit,  the mass МJ = М5 = 318М3 of the Jupiter, the 
time period ТJ = Т5 = 4332  days of the Jupiter’s circulation around the Sun,  the average radius RОJ = RO5 = 777.6 · 
106 km  of the Jupiter’s orbit, the time period TSАТ = Т6 = 10759 days of the Saturn’s circulation around the Sun, 
the mass МSАТ = М6= 95.2МЗ   of the Saturn, the average radius ROSАТ = RO6 = 1426·106 km of the Saturn’s 
orbit, the mass МU = М7 = 14.6МЗ  of the Uranus,  the time period ТU = Т7 = 30685 days  of the Uranus’ circulation 
around the Sun, the average radius ROU = RO7 =  2868·106 km of the Uranus’  orbit, the mass МN = М8 = 17.2МЗ  of 
the Neptune, the average radius RON = RO8 =  4497·106 km of the Neptune’s orbit, the time period ТN = Т8 = 60189 
days  of the Neptune’s circulation around the Sun, the mass МP = М9 = 0.002МЗ  of the Pluto, the time period ТP = 
Т9 =  90465 days  of the Pluto’s circulation around the Sun and the average radius ROP = RO9 = 5900·106 km of the 
Pluto’s orbit.  
 Taking into account the calculated powers of the maximal energy gravitational influences of the 
planets on the unit mass of the Earth  (at the mass center 3C  of  the Earth) in the frame of the considered first 
approximation of the circular orbits of the planets, we obtained [Simonenko, 2009; 2010] the following 
numerical sequence of the non-dimensional relative maximal powers of the planetary energy gravitational 
influences on the unit mass of the Earth (at the mass center 3C  of  the Earth): )Cf(2, 3 =37.69807434 (for 

the Venus), )Cf(5, 3 = 7.41055774 (for the Jupiter), )Cf(1, 3  (for the Mercur )C3 = 0.67441034 = 1 y), f(4,
(for the Mars )3 = 0.24601009 (for the Saturn )3), Cf(6, ), Cf(7,  = 0.00319056 (for th s), )Cf(8, 3  = e Uranu

0.00077565 (for the Neptune) and )Cf(9, 3  = 3.4813·10-8   Pluto).  
To evaluate the relative ene itational influence of the inne

Venus) and the outer planets 

(for the
rgy grav r planets τi (the Mercury and the 

iτ (the Mars, the Jupiter, the Saturn, the Uranus, the Neptune and the Pluto) at 
the surface point ЗD  (which i the intersection of the direct line (connecting the mass center O  of the Sun 

and the mass cent ЗC  of the Earth) with the surface of the Earth), we obtained [Simonenko, 2007] the 

gravitational potential int) ,(DЗЗi  
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 at the surface point  of the Earth. We derived [Simcreated by the inner planet onenko, 2007] the iτ ЗD

expression for the partial derivative int),(Dψ ЗЗi
∂

 of the gravitational potential (3.21):  
t∂
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The potential created by the outer planet  at the surface point  (for configuration shown 

n Fig. 8)  is given by the following expression [Simonenko, 2007]: 
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We derived [Simonenko, 2007] the expression of the partial derivative ext),(Dψ  of the 
t ЗЗi∂
∂

gravitational potential (3.23):                     
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which is reduced to the relation (3.22) as a consequence of the equalities  3i

and . However, we take into account that the expression (3.24) is given for 

S

ω-sin(ω
)tω-(ωcos)tω-cos(ω iЗ3i =

the outer planet iτ , but the expression (3.22) is given for the inner planet iτ . 

We used [ imonenko, 2007; 2009; 2010] the maximal positive value 
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partial derivative int),(Dψ
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 of the gravitational  potential int),(Dψ ЗЗМ  created ry at the 

surface point ЗD  gravita of the planets of the Solar 

System on the Earth (at point ) in the considered first approximation of the circular orbits of 
the planets.  

∂
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 of the Earth) as a scale of the energy

the surface 

tional influence 

ЗD

To evaluate the relative energy gravitational influence of the inner planet τi (the Mercury and the 
Venus) at the surface point , we considered [Simonenko, 2007; 2009; 2010] the ratio  of the ЗD )Df(i, 3

maximal positive value int),(Dψ
t

max ЗЗi
∂

 (of the partial derivative 
∂

int),(Dψ
t

 ЗЗi∂
∂

 of t g av tational he r i

potential int),(Dψ ЗЗi  created by planet τ the inner ) and the maximi   at the point al positive value ЗD

int),(Dψ
t

max
∂
∂

f the partial derivative ЗЗМ  (o int),(Dψ
t ЗЗМ∂
∂

 of the gravitational potential 

int),З created by the Mercury at th З  of the Earth): (Dψint),(Dψ ЗМЗЗ1 ≡ e surface point 

                                           

D

t
int),(Dψmax

t
int),(Dψmax

ЗЗM

ЗЗi

∂
∂

∂
∂

=)D(i, 3
.  (i = 1, 2)                              f                         (3.25)  

To evaluate  the relat nce of the outer planet τive energy gravitational influe i at the surface point ЗD  of 

the Earth, we considered [Simonenko, 2007; 2009; 2010] the ratio  (for i = 4, 5, 6, 7, 8, 9) of the )Df(i, 3

maximal positive value ext),(Dψ
t

max ЗЗi∂
∂

 (of the partial derivative ext),(Dψ
t

 ЗЗi∂
∂

 of the gravitational 

potential  created by the outer planet τ at the surface point ) and the maximal positive value ext),(Dψ ЗЗi i ЗD

int),(Dψmax ЗЗМ  (of the partial derivative 
t∂
∂ int),(Dψ

t ЗЗМ∂
∂

 of the gravitational potential  

int),(Dψ ЗЗМ created by the Mercury at surface point ): ЗD
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t
int),(Dψmax

t
ext),(Dψmax

ЗЗM

ЗЗi

∂
∂

∂
∂

=)Df(i, 3
 .  ( 9 8, , 7 6, 5, 4,i = )                                    (3.26)  

Using the formulae  (3.25) and (3.26) with the average radius RЗ = 6371 km  of the Earth and with the 
additional planetary numerical values [Zhirmunsky and Kuzmin, 1990], we calculated [Simonenko, 2009; 
2010] the following numerical values (corrected slightly the previous numerical values of 

[Simonenko, 2007] ): = 37.70428085 (for the Venus), = 7.40926122 (for the 

Jupiter), = 1 (for the Mercury), = 0.67420160 (for the Mars), = 0.24596865 (for 

the Saturn), 

)Df(i, 3 )Df(2, 3 )Df(5, 3

)Df(1, 3 )Df(4, 3 )Df(6, 3

)Df(7, 3  = 0.00319004 (for the Uranus),  = 0.00077552 (for the Neptune) and  
= 3.4807·10

)Df(8, 3 )Df(9, 3
-8  (for the Pluto).  

 Taking into account the calculated powers of the maximal energy gravitational influences of the 
planets on the unit mass of the Earth  (at the mass center  of  the Earth and at the surface point  of the 3C ЗD
Earth) in the frame of the considered first approximation of the circular orbits of the planets, we obtained 
[Simonenko, 2007; 2009; 2010]  the following order of signification of the planets of the Solar System 
(Venus, the Jupiter, the Mercury, the Mars, the Saturn, the Uranus, the Neptune and the Pluto) in respect of 
the planetary power of the maximal energy gravitational influences on the unit mass of the Earth.  

To evaluate the relative energy gravitational influence of the inner planet τi  at the surface point  ЗD
and at the  mass center  of the Earth, we considered [Simonenko, 2009; 2010]  the ratio   of ЗC )C,(Dq 33i

the maximal value max Зiψ
t∂
∂

(DЗ, int)  and the maximal value max Зiψ
t∂
∂

(CЗ, int):  

                                      

t
int),(Cψmax

t
int),(Dψmax

ЗЗi

ЗЗi

∂
∂

∂
∂

=)C,(Dq 33i
.  (i = 1, 2)                                                        (3.27)  

 To evaluate the relative energy gravitational influence of the outer planet τi  at the surface point  ЗD
and at the  mass center  of the Earth, we considered [Simonenko, 2009; 2010]   the ratio   of ЗC )C,(Dq 33i

the maximal value max Зiψ
t∂
∂

(DЗ, ext)  and the maximal value max Зiψ
t∂
∂

(CЗ, ext): 

                               

t
ext),(Cψmax

t
ext),(Dψmax

ЗЗi

ЗЗi

∂
∂

∂
∂

=)C,(Dq 33i
.   ( 9 8, , 7 6, 5, 4,i = )                                           (3.28)  

Using the formula (3.27), we calculated [Simonenko, 2009; 2010] the following numerical values: 
000123023 1.)C,(Dq 331 =  (for the Mercury)  and 000287771 1.)C,(Dq 332 =  (for the Venus). Using the 

formula (3.28),  we calculated [Simonenko, 2009; 2010] the following numerical values: 
999813318 .0)C,(Dq 334 =  (for the Mars), 999948084 .0)C,(Dq 335 = (for the Jupiter), 

999954640 .0)C,(Dq 336 =  (for the Saturn), 999956727 .0)C,(Dq 337 =  (for the Uranus), 

999957084 .0)C,(Dq 338 =  (for the Neptune)  and 999957263 .0)C,(Dq 339 = (for the Pluto). 
The revealed [Simonenko, 2009; 2010] small difference of the maximal energy gravitational influence 

of each  planet at the surface point  and at the  mass center  of the Earth results to the  small difference ЗD ЗC
of the combined maximal energy gravitational influences of the planets of the Solar System at the points   3C
and  of the Earth. It was recognized [Simonenko, 2009; 2010]  that the  small difference of the combined ЗD
planetary maximal energy gravitational influences at the surface point  and at the  mass center  of the ЗD ЗC
Earth must lead to the following related geophysical phenomena: the small oscillatory motion of the rigid 
kernel of the Earth relative to the fluid kernel of the Earth; the small oscillation of the Earth’s pole (i.e., the 
Chandler’s wobble of the Earth’s pole); the small oscillations of the boundary of the Pacific Ocean (i.e., the 
seismic zone of the Pacific Ring); the oscillations, rotations and deformations of the geo-blocks weakly 
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coupled with the surrounding plastic layers in all seismic zones of the Earth and the formation of fractures 
related with the strong earthquakes and the planetary cataclysms.  

 
 
 

3.1.3. The evaluation of the relative maximal planetary integral energy 
gravitational influences on the Earth  in the approximation of the 

circular orbits  of the planets of the Solar System 
 

 We assume that   and   are the initial phases of the Earth  and the planet , respectively. 

Consequently, the positions of the center of the Earth  and the center of the planet  (inner or outer) for 
the time moment t are given (instead of the relations (3.10) and (3.11)) by the following expressions:  

 0Зφ  0iφ зτ iτ

зτ iτ

t
T
2π=tω=φ

i
i i + ,                                                               (3.29)   0iφ

t
T
2π=tω=φ
З

З з + .                                                            (3.30)   0Зφ

 Taking into account the initial phases  and  the expressions (3.15), (3.18), (3.22) and  (3.24)   0Зφ ,φ  0i

can be generalized as follows [Simonenko, 2009; 2010]:   
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ext),(Cψ
t

int),(Cψ
t ЗЗiЗЗiЗЗi ∂

∂
=

∂
∂

=
∂
∂

=  

         ,
}]-)tω-cos{(ωR2R-R[R

}-)tω-sin{(ωωRRγM
23

030iЗiОiОЗ
2
Оi

2
ОЗ

030iЗiiОiОЗi

ϕϕ
ϕϕ

++
+

=                                         (3.31)  
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 We obtained [Simonenko, 2007] the integral energy gravitational influence 

)tt,,,,τ(E 003i0iзg ϕϕ∆  on the Earth  owing to the non-stationary instantaneous energy gravitational зτ
influence of the planet  (inner or outer) during the time interval : iτ t),(t 0

   =)tt,,,,τ(E 003i0iзg ϕϕ∆ ∫∫ ∫∫∫ ′⎟
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,                     (3.33)  

where   is the mass of the Earth. Substituting (3.31) into  (3.33), we  obtained [Simonenko, 2007]: ЗM
                                          )tt,,,,τ(E 003i0iзg ϕϕ∆ = 

   td
}]-t)ω-cos{(ωR2R-R)[(R
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= ∫ .                                  (3.34)  

The result of integration of the expression (3.34) is given by the analytical relation [Simonenko, 2007]:  

                                            )tt,,,,τ(E 003i0iзg ϕϕ∆ =                                                                       (3.35)  
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characterized by the following coefficients   

        , ,   iOiO3i3i ωRRMγMα = 2
Oi

2
O3i )R()R( +=β OiO3i RR2=χ .                            (3.36)  

 Using the initial phases = 0 and = 0 for the initial time moment , the expression (3.35)  0Зφ  0iφ 0t  0 =
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gives the more simple  relation monenko, 2007]:  [Si

                      
[ ] [ ] ⎥

⎥
⎦

⎤
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=∆ i2α

−−
−

−− 2
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1
iii3i
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)t}ωcos{(ωχβ

1

χβ

1
)χω(ω

)t,0,0,0,τ(E               (3.37)  

used for calculation of the maximal integral energy gravitational influence of the planet  (inner or outer) iτ
on the Earth зτ . Consider the expression (3.37) by taking into account that the mass center iC  of the inner 

planet iτ , the mass center  зC  of the Earth  зτ  and the mass center  О of the Sun are located on the axis X  

for the initial time moment 0=  as it is shown on Fig.  6.   Considering  the time duration  

                                             

t  0

       
)T-(T

TT1=(i,3) Зi ,  (i =1, 2)                                                  
2

t
iЗ

*
1              (3.38)  

 of the inner planet we obtain that the mass center , the mass center  C  of the Earth  τ  and the mass iC iτ з з

center  О of the Sun will localized again on the some straight line and the distance between the mass centers 
of the inner planet iτ  and the Earth  зτ  will be maximal. We obtained [Simonenko, 2007; 2009; 2010] from 
relation (3.37)  the positive integral energy gravitational influence on the Earth’s  continuum during the time 

(i,3)t*
1 : 
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[Simonenko, 2007] from relation (3.37) that the integral energy gravitational influence on the 

2 =                                                                  (3.40)  

         

  
We obtained 
Earth of the inner planet iτ  is equal to the zero  
                                                       ,0,0,τ(E iзg∆

∗ 0)(i,3),0t
during the time duration  
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TT
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2 = ,  (i =1, 2)                                                                   (3.41)  

ass centers of the 

an uming 

that  t

when the distance between the m inner planet τ  and the Earth τ  will be minimal.  i з

We tested [Simonenko, 2007] the relation (3.37) for the outer planet  iτ  d the Earth зτ  ass

he mass centers the outer planet  iτ  and the Earth зτ , and the mass center О of the Sun are located on 

the axis  X  for the initial time moment 0t  0 =  as it is shown on Fig. 6. Considering the time duration 

                                            
)T-(T
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1 ,  (i =4, 5, 6, 7, 8, 9)                                             (3
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1

3i

= .42)  

we ha he outer  planet
st  m

ve that the mass center of t , the mass center  C  of the Earth  τ  and the mass  iτ з з

center  О of the Sun will again located on the some raight line and the distance between the ass centers of 
the outer  planet iτ  and the Earth  зτ  will be maximal. We obtained [Simonenko, 2007] from relation (3.37)  
the negative integral energy gravitational influence on the Earth of outer planet iτ  during the time i)(3,t*

1 : 
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we ob  relation (3.3

,∆                                    (3.45)  
(3.36), we established [Simone

give the following extrem

tained [Simonenko, 2007]  from 7) the zero integral energy gravitational influence on the 
Earth from the outer planet iτ  during the time i)(3,t2 :                                         

                                   .0)(3t,0,0,τ(E 2iзg =∗                                  

*

i),0
Using the expressions nko, 2007]  that the expressions (3.39) and (3.43) 

e values   
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 (i = 4, 5, 6, 7, 8, 9)                                              (3.47)  

of the integral energy gravitational influences (respectively, the positive maximal integral energy 
gravitational influence from the inner planet iτ  and the negative minimal integral energy gravitational 
influence from the outer planet iτ ) for the given initial phases  0Зφ = 0 and   0iφ = 0 (for the initial time 

moment  0t  0 = )  corresponding to the initial configurations shown on Fig. 5 and Fig. 6, respectively.   
 Using the relation (3.46), we obtained [Simonenko, 2007]  for the Mercury (i =1) and for the Venus (i 
= 2) the following expressions of the maximal positive integral energy gravitational influences on the Earth: 
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 Considering the  mass  of the macroscopic continuum region near the surface point  (instead of τm  зD
th ass ЗM  of the Earth) in relations (3.48) and (3.49), we obtained [Simonenko, 2007]  the following e m
expressions for the positive integral energy gravitational influences of  the Mercury (i =1) and the Venus (i = 
2) on the macroscopic continuum region of the  mass τm  near the surface point зD  of the Earth: 
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 We shall use the expression (3.48) as a measuring unit for evaluations of the maximal absolute values 
of the integral energy gravitational influences on the Earth of  the planets of the Solar System and the Moon.  
 Considering the ratio of the extreme value  )t,0,0,0,τ(Emax iзgt

∆  (given by the expression (3.46))   

and aximal positive integral energy gravitational influence )t,0,0,0,τ(Ethe m max 1зgt
∆  (given by the 

expression (3.48)) of the Mercury on the Earth, we obtained [Simonenko, 2007] values s(i)   of  the relative 
the maximal integral energy gravitational influences on the Earth of the inner planets: 
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2
OЗO1 −− i = 1, 2.                         (3.52)  

 We have the obvious value  for the Mercury (i = 1). We calculated  [Simonenko, 2007] the 1s(1) =
v 6409.89s(2) =  for the Venus (i = 2) based on the planetary numerical values [Zhirmunsky and alue 
Kuzmin, verage radii of the orbits, the time periods of circulations around the Sun and the 1990] of the a
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masses of the  Earth,  the Venus  and the Mercury.  
 Since the values given by the expression  (3.47) are negative for the outer planets, we used the 
absolute (positive) value   

                                 =∆=∆ ∗ )i),0(3,t,0,0,τ(E)t,0,0,0,τ(Emin 1iзgiзgt
  

                                  = 2γ iЗMM
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ЗO3   > 0,  i = 4, 5, 6, 7, 8, 9.                                  (3.53)  

 Using the expressions (3.53) and (3.48), we obtained [Simonenko, 2007] the relative values  of s(i)
th ximal integral energy gravitational influences on the Earth of the outer planets of the Solar Syst (i = e ma em 
4, 5, 6, 7, 8, 9): 
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 i = 4, 5, 6, 7, 8, 9.          (3.54)  

 Based on the planetary numerical values [Zhirmunsky and Kuzmin, 1990], we calculated the following 
n ical values [Simonenko, 2007]: 6396.2s(4)umer =  for the Mars (i=4),  319.31s(5) =  for the Jupiter 
(i=5),  036.1s(6) =  for the Saturn (i= 336), 01.0s(7) =  for the Uranus (i=7 3229  for the ), 00.0s(8) =
Neptun 7104495.1s(9) −⋅=  =9).  e (i=8)  and   for the Pluto (i

 Taking into account the calculated relative values s(i)  of the maximal integral energy gravitational 
influences on the Earth of  the planets of the Solar System e obtained [Simonenko, 2007] the following ,  w
order of signification of the planets of the Solar System: the Venus ( 6409.89s(2) = ), the Jupiter 
( 319.31s(5) = ), the Mars ( 6396.2s(4) = ), the Saturn ( 036.1s(6) = ), the Mercury ( 1s(1) = ), the 

U 0133.0 ), the 003229.0ranus ( s(7) = Neptune ( s(8) = ) a 104495.19) −⋅= espect nd the Pluto ( 7s( )  in r
of the esta cance of the planeta l energy gravitational influences on the Earth.  blished signifi ry maximal integra
 We established [Simonenko, 2007] that the Venus and the Jupiter induce the main maximal integral 
energy gravitational influences on the Earth. The Mars, the Saturn and the Mercury induce the combined 
m al integral energy gravitational influence on the Earth, which is one order of the magnitude smaller axim
than the maximal integral energy gravitational influence of the Jupiter. The maximal integral energy 
gravitational influences on the Earth of the Uranus, the Neptune and the Pluto are two, three and seven 
orders of the magnitude, respectively, smaller than the maximal integral energy gravitational influence of the 
Mercury. 

 
 

3.2. The energy gravitational influence on the Earth of the Moon  

3.2.1. The evaluati ence of the Moon 
on the Earth in the second approximation of the elliptical orbits of the Earth and the 
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on of the relative maximal instantaneous energy gravitational influ
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c ass center   MOON3,C of the Earth and the Moon. We have the following relations 
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for the distance (t))(r MOONMOON ϕ  between the combined mass center (of the Earth and the 

Moon) and the mass center of the Moon  and for the distance 

 MOON3,C

 MOONC  (t))(r EE ϕ  between the combined 

OON and the mass 

it of the

) are the focal param espectively
enter 

ista e (d3M

                 

mass center M3,C center  зC  of the Earth зτ . We have  the focal parameter and the 

eccentricity MOONp  and , respectively, of the elliptical orb  Moon. Ep  and Ee  

( e = e eter and eccentricity, , of the elliptical Earth’s orbit 
around the c  mass c  MOON3,C of the Earth and the Moon. We have the expression for the 

d nc )EM : 
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between the mass center  of the Moon and the point , which is the intersection of the direct line 

 the mass center  of the Moon and the mass center of the E

Earth

3

 MOONC ME
(connecting arth τ ) with the surface  MOONC  зC  з

of the Earth зτ . We have the expression for the gravitational potential  )(Eψ MЗMOON  created  by the 

Moon at the point ME  of the зτ :            

                                          )(Eψ MЗMOON   
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 of the Moon  around the combined mass center stem

W lation (3 artial derivative   

 
 
Fig. 9.  The geometric sketch of circulation of the mass center  зC  of the Earth зτ  and the mass center 

 MOONC  MOON3,C of the sy  Earth-Moon  
  
 

e obtained [Sioneneko, 2009; 2010] from the re .58)  the expression for the p
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  of the gravitational potential   created  by the Moon at the point  of 

the Earth 
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We have the expression for the distance )C(d 33M : 
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expression for the gravitational potential  created  by the Moon at the mass center of the 

       

                                           

                (3.60)  

en the mass center  MOONC  of the Moo he  зC зτ
)(Cψ 3ЗMOON   з

Earth τ :     

C

з

.
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Мγ-=)(C
3

MOON
3ЗMOON

We obtained [Sim
(d

ψ
ЗM

                                                               (3.61)  

onenko, 2009; 2010] from the relation (3.61)  the expression for the partial derivative   

)(Cψ
t 3ЗMOON∂

  (of the gravitational potential  3  created  by the Moon at the mass center 
∂

ЗMOON

                 

)(Cψ

 зC  of the Earth з ): τ

( ) dt
(t)d

p
(t))sin(peγM)(C

MOON
3OON

ϕϕ
=

∂
.                     (3.62)  

We can obt n th

p
ψ

t
MOON

2
E

MOONMOONMOONMOON
ЗM

+∂

 ai e focal parameter of the elliptical orbit of the Moon in terms of the average 

 (between the mass centers of the Earth and the Moon) and the eccentric

MOONp  

distance ity EMOON ee =  of 3MR
the elliptical orbits of the Moon and the Earth around the combined mass center  of the Earth and 

= + )=

 MOON3,C
the Moon. 

Using the relation (3.55), we have the relation for the large semi-axis MOONa  of the elliptical orbit of 
the Moon:  

     MOO2a N (0)rMOON MOONr ( π )e(1
p

MOON

MOON

+
+ )e-(1

p

MOON

MOON
= )e-(1

2p
2
MOON

MOON
,                         (3.63)  

 the relation for the focal parameter  of the elliptical orbit of the Moon in terms of the 

ntricity OONe  and  large m xis the elliptical it of the Moo

                                           .                                                                    (3.64)  

 (between the m  of the 

rithmet

of th

MOONpwhich gives

ecce M the  se i-a of orb n:   MOONa  

)e-(1p 2
MOONMOON = MOONa

We can obtain the large semi-axis a  of the elliptical orbit of the Moon in terms of  the average 

distance R ass centers of the Earth and the Moon) and the eccentricity

MOON

3M  MOONe
elliptical orbit of the of the Moon. Defining the average distance R  (between the mass centers of the 3M

Earth and the Moon) as the average a ic value of the large semi-axis MOONa  and the small semi-axis 

MOONb  e elliptical orbit of the Moon: 

                                              R = ( a + b )/2,                                                                     (3.65)  

and using the definition of the eccentricity e  of the elliptical orbit of the Moon: 

3M MOON MOON

MOON

,e MOON
M a

==                                                (3.66)                                            
bc 22

MOONMOON
OON

a
a

−

ass centers 
of the Earth and the Moon): 

MOONMOON

we obtained [Simonenko, 2009; 2010] the relation for the average distance R  (between the m3M



( )
2

e11
R

2
MOONMOON

3M
−+

=
a

,                                                             

(between the mass centers of the Earth and the Moon) and the eccentricity 

                                               

                                                (3.67)  

which leads to the relation for the large semi-axis MOON (of the elliptical orbit of the Moon) in terms of 

the average distance 3MR  

a

MOONe  of the elliptical orbit of the Moon: 

)e11( 2
MOON

MOON
−+

Using the relations (3.64) and (3.68), we obtained [Simonenko, 2009; 2010] the relation for the focal 

r MOON of the elliptical orbit of the 

R2 3M=a .                                                                     (3.68)  

paramete of the Moon in terms of the average distance  (between 

the mass centers of the Earth and the Moon) and the eccentricity  of the elliptical orbit of the Moon: 

p 3MR

 MOONe

                                
)e11( 2

MOON

MOON
−+

.                                                                     (3.69)  

Using the relation (3.69)  and the relations [Savelyev, 1991]: 
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2
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=
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Mpp 3

EMOON,MOON +
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MOON3
             

                                        )M(M
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MOON3

the relation (3.62) can be rewritten as follows [Simonenko, 2009; 2010]

MOON
EMOON,E +

= ,                                                                      (3.71)  
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Taking 

M3 ⎠⎝

1(t))sin( MOON =ϕ   and equating 
dt

(t)d MOONϕ
 to  (for the corresponding 

thetical circular orbits of the Earth and the Moon), we obtained [Simonenko, 20

characteristic maximal positive value 

MOONω

hypo 09; 2010] the 

approx.) second ,(Cψ
t

pos..maxchar. 3ЗMOON∂
∂

 of the partial 

derivative  )(Cψ
t 3ЗMOON
∂

 (obtained in the second approximatio e ellipti
∂

n of th cal orbits of the Earth and 

the  Moon around the combined mass center   MOON3,C of the Earth and the Moon): 
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We used the maximal positive value int),(Cψ
t

max ЗЗМ∂
∂

 (of the partial derivative int),(Cψ
t ЗЗМ∂
∂

 

of the gravitational potential  created by the Mercury at the mass center  of the Earth   int),(Cψ ЗЗМ 3C
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moving  around the mass center O of the Sun along the hypothetical circular orbit) as a scale of the energy 
gravitational influence of the Moon on the Earth. To evaluate (in the second approximation) the relative 

rgy gravitational influence of the Moon on the Ea
the ratio  of the characteristic maximal positive value 
power of the ene rth, we obtained [Simonenko, 2009; 2010] 

.)approxsecond,C(f 3МOONM

approx.) second ,(Cψ
t

pos..maxchar. ∂
 and the m value 3ЗMOON∂

aximal positive 

int),(Cψ
t

max ЗЗМ∂
: 

           .)approxsecond,C(f 3МOONM =

∂

int),(Cψ
t

max

approx.) second ,(Cψ
t

pos.max. char.

ЗЗМ

3ЗMOON

∂
∂

∂
∂

.                     (3.74)  

 the corresponding numerical value We calculated [Simonenko, 2009; 2010]

=19.44083 taking into account the following numerical values: =0.05, .)approxsecond,C(f 3МOONM MOONe
,81/MM 3МOON =  ,M06.0M 3М = 5306.29TМOON =  days and 88TМ =  days. 

The calculated numerical value =19.44083  (evaluated in the frame of .)approxsecond,C(f 3МOONM

the considered second approximation) m ximal energy gravitational influence of eans that the power of the ma
the Moon (on the unit mass of the Earth at the mass center  of the Earth) is 3C

.)approxsecond,C(fМOONM =19.44083  times larger than the  maximal power of the energy gravitational 3

influence (on the unit mass at the mass center 3C  of the Earth) of the Mercury  moving  around the mass 
center O of the Sun along the 

Taking into account the calculated [Simonenko, ] non-di nal maximal instantaneous 
energ e unit mass of the Earth a

3

= 0.2460100

second approxim

en
instantaneous ass of the Earth at the m
Earth) revealed [ main  instantaneous energy
Earth of 

mbined l influen ccount 

hypothetical circular orbit.  
2009; 2010 mensio

y gravitational influences on th t the mass center 3C  of the Earth:  

)Cf(2, 3 =37.69807434 (for the Venus), .)approxsecond,C(f 3МOONM =19.44083404 (for the Moon), 

)Cf(5, 3 = 7.41055774  (for the Jupiter), )Cf(1, 3 = 1 (for the Mercury), Cf(4, = 0.67441034 (for the 

9 (for the Saturn), )Cf(7, 3

)
Mars), )Cf(6, 3  =  0.00319056 (for the Uranus), )Cf(8, 3  = 

0.00077565 (for the Neptune) and )Cf(9, 3  = 3.4813·10-8 (for the Pluto), we obtained [Simonenko, 2009; 
2010] the following order of significance (in the frame of the considered ation) of the Moon 
and the planets of the Solar System: the Venus, the Moon, the Jupiter, the Mercury, the Mars, the Saturn, the 
Uranus, the Neptune and the Pluto. The obtained numerical sequence (of the non-dim sional maximal 

energy gravitational influences on ass center 3C  of the 
Simonenko, 2009; 2010] the  gravitational influences on the 

the Venus, the Moon, the Jupiter, the Mercury and the Mars, which determine (in collection) the 
main co instantaneous energy gravitationa ce on the Earth (not taking into a the 
instantaneous energy gravitational influences of the Sun and our Galaxy).   

the unit m
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3.2.2. The evaluation of the maximal integral energy gravitational influence of the Moon on the Earth 

in the second approximation of the elliptical orbits  of the Earth and the Moon 
around the combined mass center  of the Earth and the Moon  MOON3,C

  
We  evaluated  [Simonenko, 2009; 2010] the maximal integral energy  gravitational influence of the 

Moon on the Earth in the approximation of the elliptical orbits  of the Earth and the Moon around the 
combined mass center  of the Earth and the Moon. We have the integral energy gravitational  MOON3,C
influence )tt,),(tMoon,(E 00 MOONзg ϕ∆  of the Moon on the Earth   during the time interval зτ t),(t 0 : 
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⎝ tt τ 00 3

 

where ЗM   is the mass of the Earth. Substituting the expression (3.72) into formula (3.75) and integrating, 
we obtained [Simonenko, 2009; 2010] the following analytical relation:  
                                           =∆ )tt,),(tMoon,(E 00 MOONзg ϕ  
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 C idering  the following phases:  π(t)MOONons =ϕ  and  0)(t0MOON =ϕ , we obtained [Simonenko, 
2009; 2010]  from relation (3.76) the maximal positive value of the integral energy gravitational influence of 
the Moon on the Earth: 

( )
.

1
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⎞

 To evaluate (in the second approximation) the maximal integral energy gravitational influence of the 
Moon on the Earth, we considered [Simonenko, 2009; 2010] the approx.) second n,  of the  ratio s(Moo 
maximal positive value (3.77) (of the integral energy gravitational influence of the Moon on the Earth) and 
the maximal positive value (3.48) (of the integral energy gravitational influence of the Mercury on the 
Earth): 
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∆
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222 )T)(TR(RMe11e −−−+

                                        

 Using the relation (3.78), we calculated [Simonenko, 2009; 2010] the numerical value 
13.0693approx.) second ,s(Moon =  for the following numerical values:  the eccentricity 05.0eMOON =  

of the elliptic Cal orbits of the Moon and the Earth around the combined mass center  of the Earth and  MOON3,

the Moon, the mass   of  the Mercury, the mass 3М1 M06.0M M ==  81/MM 3МOON =   of the Moon, the 
average distance R  = 384400 km between the mass centers of the Earth and the Moon, the time period Т  = ЗM З
365.3 days of the Earth’s 88 days of the Mercury’s  circulation around the Sun; the time period Т1=ТM = 
circulation around the Sun, the average radius ROM = RO1 = 57.85 ·106 km of the Mercury’s orbit around the 
Sun, the average radius R  = 149.6 ·106  km of the Earth’s orbit around the Sun. The calculated numerical OЗ

val 13.0693approx.) second s(Moon, =  revealed [Simonenko, 2009; 2010] the very significant ue 
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correction of the previous numerical value  9178.2s(Moon) =  [Simonenko, 2007] obtained in the first 
approximation for the surface point 3D  of the Earth. 
 Thus, considering the aspect of the planetary gravitational preparation of the strong earthquakes, we 
demonstrated [Simonenko, 2007] the Venusian ( 6409.89s(2) = ) and the Jupiter’s ( 319.31s(5) = ) 
energy gravitational predominance [Simonenko, 2007] in supplying of the cosmic planetary gravitational 
energy to the focal region of the preparing earthquakes. We demonstrated [Simonenko, 2009; 2010] the very 
significant 13.0693)approx.) second (s(Moon, = maximal integral energy gravitational influence of the 
Moon on the Earth. The Venus, the Jupiter and the Moon induce the main combined planetary and lunar 
integral energy gravitational influence on th d maximal integral energy gravitational e Earth. The combine
influence on the Earth of the Mars ( 2s(4) = 036.16)6396. ), the Saturn ( s( = ) and the Mercury ( 1s(1) = ) 
is one order of the magnitude smaller than the maximal integral energy gravitational influence of the Venus. 
The combined maximal integral energy gravitational influence on the Earth of the Uranus ( 0133.0s(7) = ), 

the Neptune ( 003229.0s(8) = ) and the Pluto ( 7104495.1s(9) −⋅= ) is two orders of the magnitude 
smaller (i.e., negligible) than the maximal integral energy gravitational influence of the Mercury. 

It wa s that the Chandler’s wobble of the Earth’s pole can be s suggested [Avsjuk, 1996] the hypothesi
generated by the motion of the rigid kernel of the Earth induced by the disturbances in the system Sun-Earth-
Moon. Taking into account the considered results of Subsections 3.1 and 3.2, we stated [Simonenko, 2009; 
2010] that the mentioned above related geophysical phenomena (the small oscillatory motion of the rigid 
kernel of the Earth relative to the fluid kernel of the Earth; the sm n of the Earth’s pole e all oscillatio  (i.e., th
Chandler’s wobble of the Earth’s pole); the small oscillations of the boundary of the Pacific Ocean (i.e., the 
seismic zone of the Pacific Ring); the oscillations, rotations and deformations of the geo-blocks weakly 
coupled with the surrounding plastic layers in all s arth and the formation of fractures eismic zones of the E
related with the strong earthquakes and the planetary cataclysms) are induced by the combined non-
stationary cosmic energy gravitational influence of the planets of the Solar System, the Sun and the Moon. 

 
 
 
 
 
 
 

3.3. The energy gravitational influence of the Sun on the Earth owing to the gravitational interaction 
of the Sun with the outer large planets (the Jupiter, the 

 

he Neptune) of the Solar System 

3.3.1. The evaluations of the relative characteristic maximal positive instantaneous energy 
gravitational influences of the Sun on the Earth owing to the gravitational  

interaction  of the Sun with the out  large planets of the Solar System 

We shall consider the movement of the Sun, the Earth  and the outer large planet  (

 Saturn, the Uranus and t
 

er
 

3τ jτ  6, 5,j =  

8 7, ) in the ecliptic plane (see Fig. 10)  around  the combined mass center )jC(S,  of the Sun and the outer  

large planet in the a  the outer large planet 

. The combined mass center   of the system the outer planet  (the Sun and the 

outer large 

jτ  pproximation of the elliptical orbits of the Sun, the Earth and

jτ )jC(S,  the Sun – large j

planet jτ ) is considered as the right focus )jC(S,F1

τ
≡   of the elliptical orbits of the outer large 

planet  (

       

jτ 8 7, 6, ) and the  Earth 3τ .  5,j =
We have the following relations: 
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 between combined mass center  and the m

for the distance 

)jC(S,   ass center jС  of the planet jτ , 

π)(r jSj +ϕ  between combined mass center    and the mass   

or the distance

)jC(S, center OCS ≡ of the 

Sun, and f  (t))(r 33 ϕ  between combined mass center  a the m

Earth , respectively. Here  and  are the focal parameter and the eccentricity, respectively of the 

planet  ( ).  and

)jC(S,  nd ass center 3С  of the 

3τ jp je , 

elliptical orbit of the   jτ 8 7, 6, 5,j = Sjp  jSj ee =  are t e focah l parameter and the 

eccentricity, respectively, of the elliptical  orbit of the mass center OCS ≡   of the Sun. 3  and 3e  are the 

focal parameter ccentricity, respectively, of the elliptical Earth’s orbit. We h 0)0(
 p

and the e ave  j =ϕ  

( 8 7, 6, 5,j = ),   π)0(Sj =ϕ  and 0)0 =(3ϕ , respectively, for the initial oment t = 0. 

e shall consider the gr itationa potential ) (t))(r  t,,(Cψ t),(Cψ 33З3jЗ3j  created by the 

 з 33

 time m

W av l S ϕ≡

Sun in the mass center  (of the Earth ) characterized by the distance  
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|(t)|(t)r rwhere  is the mass of the Sun, 3S M333000M ⋅= S3S3 =  is the distance between the mass 

center  of the Earth .  
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Fig. 10. The geometric sketch of movement of the outer large planet  (the Jupiter, the Saturn, jτ

the Uranus and the Neptune)  and the Earth   around the combined mass center   3τ )jC(S,
of the  Sun and the outer large planet  jτ

 
We find the distance  from the following relation: (t)rSЗ
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 Consequently, the relation (3.82) can rewritten as follows: 
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 We obtain the expression for the partial derivative ) t ,(Cψ
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 of the gravitational potential  

: ) t ,(Cψ З
S
3j

              
.

dt
(t)d

)cose(1(t))(r
)])cos((rπ)([rsinπ)e(rγM

dt
(t)d

(t))(r
))sin((π)r(rγM

t),(Сψ
t

j

jSj
3

S3

j333jSjjSjjSjS

j
3

S3

j333jSjS
3

S
3j

ϕ
ϕ

ϕϕϕϕϕϕ

ϕϕϕϕϕ

+

−+++
+

+
−+

=
∂
∂

                                (3.85)  

 
Using the expressions (3.80),  (3.81) and (3.83),   the relation (3.85) can be rewritten as follows: 
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The first term of the expression (3.86)  gives the principal contribution to the partial derivative 

) t ,(Cψ
t З

S
3j∂

∂
. The expression (3.86) contains the additional second term (vanishing at ) related 

with the contribution to the  partial derivative 

0eSj →

) t ,(Cψ
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S
3j∂

∂
 of the eccentricities  and   of the 

elliptical orbits of the outer large planet  (j=5, 6, 7, 8) and  the Sun, respectively.  

je jSj ee =

jτ
 

The combined maximal contribution of this additional second term to the partial derivative 
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Consequently, the contribution of the first term of the expression (3.86)  is ( )je/1O  times larger than the 

contribution of the additional second term related with the eccentricities  and   of the elliptical 

orbits of the outer planet  (j=5, 6, 7, 8) and  the Sun, respectively.  
je jSj ee =

jτ

To evaluate the characteristic maximal positive value ) t ,(Cψ
t

 pos. max. char. З
S
3j∂

∂
 of the partial 

derivative ) t ,(Cψ
t З

S
3j∂

∂
 (given by the expression (3.86)) we consider the time moments  related 

with the conditions  

,)k(t∗

                                   0,)cos( 1,)sin( j3j3 =−=− ϕϕϕϕ                                                   (3.88)  

which give the following relation for the angles 3ϕ  and jϕ  

                                          .0,1,2...k,k2π
2
π)( j3 =+=−ϕϕ                                                           (3.89)  

Considering the following relations (for the corresponding hypothetical circular orbits of the Earth and 
the planet  ( )) for the angles jτ 8 7, 6, 5,j = (t)3ϕ   and (t)jϕ : 
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3 ≈≈ ϕϕ                                                                       (3.90)  

the condition (3.89) gives (for ) the following time  and the corresponding angles 0k = ∗t )t(3 ∗ϕ  and  
)t(j ∗ϕ : 
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which result to the characteristic maximal positive value ) t ,(Cψ
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We shall use the relation [Simonenko, 2007; 2009; 2010] for the maximal positive value 

int),(Cψ
t

max ЗЗМ∂
∂

 (of the partial derivative int),(Cψ
t ЗЗМ∂
∂

 of the gravitational potential  

created by the Mercury (moving around the mass center O of the Sun along the hypothetical circular orbit) at 
the mass center  of the Earth):      
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as a scale of the energy gravitational influence of the Sun (owing to the outer large planets  (j=5, 6, 7, 8) 
of the Solar System) on the Earth. To evaluate the relative power of the energy gravitational influence of the 
Sun (owing to the outer large planets  (j=5, 6, 7, 8) of the Solar System) on the Earth as compared with the 

power of the energy gravitational influence of the Mercury, we find the ratio  of the 

characteristic maximal positive value 

jτ

jτ
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 pos. max. char. З
S
3j∂

∂  (given by the expression (3.92)) and 

the maximal positive value int),(Cψ
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  (given by the expression (3.93)): 
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Using the relation (3.95), the ratio  (given by the expression (3.94)) can be rewritten as 
follows: 
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The obtained formula (3.96) is valid only for the outer large planets (the Jupiter, the Saturn, the Uranus 
( ) and the Neptune) of the Solar System. Using the formula (3.96) and the planetary numerical values 
[Zhirmunsky and Kuzmin, 1990; Simonenko, 2007; 2008; 2009; 2010], we calculate the following numerical 
values (of the non-dimensional energy gravitational influences of the Sun on the Earth owing to the 
gravitational interaction of the Sun with the outer large planets):  884.935424  (for the 
Sun owing to the gravitational interaction of the Sun with the Jupiter), 
  (for the Sun owing to the gravitational interaction of the Sun with the Saturn), 

  (for the Sun owing to the gravitational interaction of the Sun with the 
Uranus) and   (for the Sun owing to the gravitational interaction of the Sun 
with the Neptune). 

7τ

=char.) ,C (5,f 3M SUN

923355.194char.) =,C (6,f 3M SUN

27951.21char.),C (7,f 3M SUN =
833557.20char.),C (8,f 3M SUN =

Taking into account the calculated numerical values  (char.),C (j,f 3M SUN 8 7, 6, 5,j = ),  we obtain the 

following order of significance of the outer large planets of the Solar System: the Jupiter  ( ), the Saturn 

( ), the Uranus ( ) and the Neptune ( ) in respect of the evaluated characteristic maximal positive 
instantaneous energy gravitational influences of the Sun on the Earth owing to the gravitational interaction of 
the Sun with the outer large planets of the Solar System. 

5τ

6τ 7τ 7τ
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3.3.2. The evaluations of the maximal positive integral energy gravitational influences of the Sun on 
the Earth owing to the gravitational interaction of the Sun with the outer large planets in the first  

approximation of the circular orbits  of the planets of the Solar System 
 

 

We shall use the relation (3.85) for the evaluation of the maximal positive integral energy gravitational 
influences of the Sun on the Earth owing to the gravitational interaction of the Sun with the outer large 
planets in the first approximation of the circular orbits of the outer large planets of the Solar System. 
Considering the orbit of the outer large planet  jτ 8) 7, 6, 5,(j =  of the Solar System as the circular (in the 

first approximation), we obtain that the orbit of the mass center OCS ≡   of the Sun may be considered as 

circular also (in the first approximation) for the closed system the Sun – the outer large planet  (the Sun 

and the outer large planet ). Consequently, we can consider (in the first approximation) in the relation 

(3.85)  the average radius 

jτ

jτ

Sjr  instead of  for the  hypothetical circular orbit of the mass center Sjr OCS ≡   

of the Sun in the closed system the Sun – the outer large planet  jτ 8) 7, 6, 5,(j = . We can consider (in the 

first approximation) in the relation (3.85) the average radius  of the Earth’s orbit instead of .  The 

average radius 
O3R 3r

Sjr  is given by the following expression  
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where  is the mass of the Sun, M  the mass of the planet jτ  5(jSM j  is , 8) 7, 6, = . Usin

3 , φ jj =   (for th

th

g the relation (3.97) 

and the relations ωφ3 = ω e  hypothetical circular orbits of the Earth and the planet jτ  

around e combined mass center  )jC(S,  of the  Sun and the planet jτ ), the relation (3.85) can be rewritten 
as follows  
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The main interest of this Subsection is related with the maximal positive integral energy gravitational 

influences of the Sun on the Earth owing to the gravitational interaction of the Sun with the outer large 

planets  : jτ 8) 7, 6, 5,(j =

                                                  )tt,,φ,φ,τ(SunE∆max 0030jj3g
t

−                                                        (3.99)  

under the following initial (for the initial time moment 0tt = ) angles:  0φ0j =  and  characterizing 

the initial configuration of the outer large planet  and the Earth  , respectively. These initial angles 

(  and ) correspond (see Fig. 10) to the minimal distance between the mass center jС  of the 

outer large planet  and the mass center  the Earth   for the initial time moment . Taking 

into account  ,  and using the derived expression  (3.98) for  
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, we have the 

following expression for the integral energy gravitational influence of the Sun on the Earth owing to the 



gravitational interaction of the Sun with the outer large planet jτ : 
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Introducing the following designations  
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Considering the initial time moment 0t 0 = , the expression (3.105) gives the relation: 
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aximal positive integral energy gravitational influences of the Sun on the 

                                    

The relation (3.106) gives the m
Earth owing to the gravitational interaction of the Sun with the outer large planets jτ  8) 7, 6, 5,(j = : 
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which are attained at first under the time moments 
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which are attained under the time moments ,  where j = 5, 6, 7, 9; n = 0, 1, 2, 3, … . The time 

n  define the planetary configurations characterizing by
(j = 5

)j,3(tt c
n=

moments ,3(tt c=  the maximal distances between )j
the mass center jС  of the outer large planet , 6, 7, 9) and the mass center 3С  of the Earth  3τ . 
Taking into account the designations (3.101), the relation (3.108) can be rewritten as follows 

            

 jτ  

⎟
⎟
⎞

⎜
⎛

⎟⎟
⎞

⎜⎜
⎛−

=−
2

jOj2
O3

3j

3Ojj
jgt MR

-R

1
)T(T

TRMM2γ
0) t,0, 0, ,τSunE∆max .                                   (3.109)  

⎠
⎜
⎝ ⎠⎝ S

3
3

M

(

 We shall use the expression (3.48) as a m aximal positive integral easuring unit for evaluations of the m
energy gravitational influences of the Sun on the Earth owing to the gravitational interaction of the Sun with 
the outer large planet . Considering the ratio of the maximal positive integral energy jτ  8) 7, 6, 5,(j =

gravitational influence 0) t,0, 0, ,τ(SunE∆max j3gt
−  (given by the expression (3.109)) of the Sun on the 

Earth (owing to the gravitational interaction of the Sun with the outer large planets jτ )  and the maximal 

positive integral energy )t,0,0,0,τ(E 1зg gravitational influence max
t
∆  (given by the expression (3.48)) of 

the Mercury on the Earth, we obtain the relative values approx.)first ,τs(Sun j−  of the maximal integral 
energy gravitational influences of the Sun on the itational interaction of the Sun with  Earth owing to the grav
the outer large planets j 8) 7, 6, 5,(jτ  = : 
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Using the formula (3.110) and the planetary numerical values [Zhirmunsky and Kuzmin, 1990; 
Simonenko, 2007] of the average radii of orbits of the Earth,  the Mercury and the Jupiter (j=5), the time 
eriods of circulations around the Sun and the masses of the Jupiter, the Mercury and the Sun, we calculate 

the nu

 

p
merical value 613239.4235approx.)first  ,τs(Sun 5 =− , which means that the maximal integral 

energy gravitational influence of the Sun (owing to the gravitational interaction of the Sun with the Jupiter) 
on the unit mass of the Earth (at the mass center 3С  the Earth 3τ )  is  

− (5)approx.)/sfirst ,τs(Sun 5 = =319.31/613239.4235  2410115.   times larger than the power 

of the maximal integral energy gravitational influence of the  Jupiter (at the m s center 3С  the Earth  3τ ).    
irmunsky and Kuzmin, 1990; 
nd the Saturn  (j=6), the time 

periods of circulations around the Sun and the masses of the Saturn, the Mercury and the Sun, we calculate 

135
as

Using the formula (3.110) and the planetary numerical values [Zh
Simonenko, 2007] of the average radii of orbits of the Earth,  the Mercury a

the numerical value ,4442965.887approx.)first  ,τs(Sun 6 =−  which means that the maximal integral 
energy gravitational influence of the Sun (owing to the gravitational interaction of the Sun with the Saturn) 
on the unit mass of the Earth (at the mass center С  the Earth  3τ )  is 3 =− (6)approx.)/sfirst ,τs(Sun 6  

=036.1/4442965.887 wer of the maximal integral energy 
gravitational influence of the Saturn (at the mass center 3С  of the Earth  τ ).    

Using the formula (3.110) and the planeta  numerical values [
dii of orbits of the Earth,  the Mercury and the Uranus (j=7), the time 

periods of circulations around the Sun and the masses o

6064638.856  times larg han the 

ry Zhirmunsky and Kuzmin, 1990; 
Simonenko, 2007] of the average ra

f the Uranus, the Mercury and the Sun, we calculate 
the nu

er t po

3

merical value ,8337322.93approx.)first  ,τs(Sun 7 =−  which means that the maximal integral 



energy gravitational influence of the Sun (owing to the gravitational interaction of the Sun with the Uranus) 
on the unit mass of the Earth (at the mass center 3С  the Earth 3τ ) is =− (7)approx.)/sfirst ,τs(Sun 7  

=0133.0/8337322.93  f the maximal integral energy gravitational 
influence of the Uranus (at the mass center 3С  of the Earth  3τ ).  

Using the formula (3.110) and the planetar numerical values [
the average radii of orbits of the Earth,  the Mercury and the Neptune (j=8), the time 

periods of circulations around the Sun and the masses of the 

167834.7055  times larger th e power o

y 

Neptune, the Mercury and the Sun, we calculate 
the nu

an th

Zhirmunsky and Kuzmin, 1990; 
Simonenko, 2007] of 

merical value ,8477601.87approx.)first  ,τs(Sun 8 =−  which means that the maximal integral 
energy gravitational influence of the Sun (owing to the gravitational interaction of the Sun with the Neptune) 
on the unit mass of the Earth (at the mass center 3С  of  the Earth 3τ )  is  

==− approxfirst ,τs(Sun 8 7182  times larger than the power of the 

maximal integral energy gravitational influence of the Neptune (at the mass center 3С  of the Earth  3τ ).    

003229

100 
 

.0/8477601.87(8).)/s  8.27205

 Thus, taking into account the calculated relative values approx.)first ,τs(Sun j−  of the maximal 
integral energy gravitational influences of  the Sun on the Earth owing to the gravitational interaction of the 
Sun with the outer large planets τ  8) 7, 6, 5,(j = ,  we obtain   the following ord  of significatio  of thj er n e 

outer large planets jτ  8) 7, 6, 5,(j =  of the Solar System: the Jupiter =− f  ,τ(s(Sun approx.)irst5  

)613239.4235 , the Satu  ),4442965.887approx.)first  ,τ(s(Sun 6rn =−  the Uranus 

)approx.)first  ,τ(s(Sun 7 8337322.93=−  and the Neptune =− approx.)first  ,τ(s(Sun 8  )8477601.87
in respect of the established evaluation of the maximal integral energy gravitational influences of  the Sun on 
the Earth owing to the gravitational interaction of the Sun with the outer large planets j  8) 7, 6, 5,(j = . We τ
establish that the Sun induce the main maximal integral energy gravitational influences on the Earth owing to 
the gravitational interaction of the Sun with the outer large planets jτ  8) 7, 6, 5,(j = .  

Considering the aspect of the cosmic gravitational preparation of the strong earth ua state q kes, we can 
the established predominance of the maximal integral energy gravitational influences of  the Sun on the 
Earth owing to the gravitational interaction of the Sun with the Jupiter 

=− approx.)first  ,τn 5 )613239.4235 , the Saturn =(s(Su − approx.)first  ,τ(s(Sun 6  ),4442965.887  

the Uranus )8337322.93approx.)first  ,τ(s(Sun 7 =−  and the Neptune =− approx.)first  ,τ(s(Sun 8  
)8477601.87  along with the established [Simonenko, 2007; 2009] Venusian )6409.89(s(2) =  and the 

Jupiter’s  gravitational predom onenko)319.31(s(5) =  planetary energy inance and the established [Sim , 
2009; 2010] ergy gravitational   significant maximal integral en influence of the Moon

13.0693)approx.) cond =  on the Earth.  se (s(Moon,
Thus, taking into account the previously established planetary [Simonenko, 2007] and lunar 

[Simonenko, 2009; 2010] numerical values and also the calculated relative values 
approx.)first ,τs(Sun j−  of maximthe al integral energy gravitational influences of  the Sun on the Earth 

owing to the gravitational interaction of the Sun with the outer large planets jτ  8) 7, 6, 5,(j = ,  we obtain the 
following order of significance of the cosmic bodies of the Solar System: the Sun (owing to the gravitational 
interaction of the Sun with the Jupiter, the Saturn, the Uranus and the Neptune), the Venus, the Jupiter, the 
Moon, the Mars, the Saturn, the Mercury,  the Uranus, the Neptune and the Pluto in respect of the evaluated 
integral energy gravitational influences of these cosmic bodies on the Earth. 

 
 
 

3.4. The real cosmic energy gravitational genesis of the strong earthquakes and the global 
planetary cataclysms 

 
3.4.1. The confirmation of the real cosmic energy gravitational genesis of  

 preparation of earthquakes 
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 Using the formula (3.51), we ev 009; 2010] the numerical value aluated [Simonenko, 2007; 2

)m,D,τ(E τ32g  of the integral energy gravitational influence of the Venus on the macroscopic 

continuum region τ  (the focal region of the preparing earthquake) of mass  τm  near the surface point зD  
of the Earth during the time  

                                         902.291
)T-(T

TT
2
1=(3,2)t(2)T З2*

1g ==  days                                                  (3.111)  
32

of the energy gravitational influence of the Venus on the macroscopic continuum region  of the Earth.  τ
Using the expression integral energy gravitational influence (3.51) for the maximal positive 

)m,D,τ(E τ32g  of the Venus (i = 2) on the macroscopic continuum region τ  of mass  τm  near the 

point зD  of the Earth, we obtained [Simonenko, 2007; 2009; 2010] the obvious estimation for the value 

)m,D(E τ3g ,τ2 : 

                                       
)T)(TR(R

TRMm2γ)m,D,τ(E ЗO2= =    
2З

2
O2

2
OЗ

2ττ32g −−

                                               =
)T)(TR(R

TRMρ)(2γ
2З

2
O2

2
OЗ

ЗO2
2τ

3
τ −−

l > 0 ,                                                  (3.112)  

where the  final expression for the estim is given for the  focal region of the cubical ation )m,D,τ(E τ32g

form characterized by the size  numerical values: =10 km  τl  of the cube. Considering  the following τl

=τρ 5000 
3kg/m  (the average density of the cubical focal region) and using the numerical value  

2-11 m/kgJ106.67γ ⋅⋅=   (of the gravitational constant) and the following known [Zhirmunsky and 
Kuzm 6in, 19 eters of the Solar System: Т90] param V = Т2 = 224.7 days, ROV = RO2 = 108.1·10  km,  МV = М2 = 
0.82МЗ З  = ⋅, М kg24 , Т106 З = 365.3 days,  we calculated [Simonenko, 2007; 2009; 2010] from the 

expression (3.112) the numerical estimation for the value )m,D,τ(E τ32g : 

                                                  )m,D,τ(E τ32g J10619.8 19⋅= ,                                                (3.113)  

which is close to the change “ J10W 20≈∆ ” [Vikulin, 2003; p. 94] of the rotational kinetic energy of the 
Earth during the strongest  ear  the estimation (3.113) for the value  thquakes. The order of magnitude of

)m,D,τ(E  is consistent with the earlier estimation of the seismotectonic energy E  [Vikulin, τ32g ST 
2003; p. 94], which can discharge in the focal region of the strongest earthquakes. Obviously, the 

seismotectonic energy )m,D,τ(E τ32ST  cannot be larger than  )m,D,τ(E τ32g : 

                                               )m,D,τ(E τ32ST  )m,D,τ(E τ32g≤ .                                          (3.114)  

 It was pointed ou 96] that the coincidence  at [Vikulin, 2003; p.  of the values nd  is not the STE  W∆
casual fact: it is the indicati onsidered as the energy quantum on that the strongest earthquake can be c
corresponding to the regular change of the rotational regime of the Earth. Using the equivalent generalized 
differential formulations (1.43), (1.50) and (1.53) of the first law of thermodynam or the  region τ   ics f  focal
of the preparing earthquake, we found rigorously the equality of the orders of the magnitude of the values 

STE  and W∆   for the strongest earthquakes. Consequently, the coincidence of the orders of the magnitude 

of the values STE , W∆  and  )m,D,τ(E τ32g  is the indication that  the regular changes of the rotational 
regime of the Earth are related with the regular discharges of the accumulated potential energy (in the 
differ al regent foc ions of earthquakes) supplying by the cosmic gravitational energy influences of the planets 
of the Solar System, the S an  Moonun d the .  
 Thus, based on the equivalent generalized differential formulations (1.43), (1.50) and (1.53) of the first 
law of thermodynamics used for the Earth’s macroscopic continuum region τ  (the focal region of the 
preparing earthquake), we evaluated [Simonenko, 2007; 2009; 2010] the reality of the cosmic energy 
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gravitational genesis of preparation of the earthquakes.  
 
 
 

3.4.2. The evidence of the integral energy gravitational influence on the Earth  
of the Sun (owing to the gravitational interactions of the Sun with the Jupiter  and  the Saturn 5τ

6τ ) and the Moon as the predominant cosmic trigger mechanism  of the  
earthquakes preparing by the combined integral energy gravitational influence 
 on the Earth of the Sun (owing to the gravitational interactions of the Sun with  

th the  e Jupiter τ  and  the Saturn τ , the Uranus τ  and  the Neptune τ ), 5 6 7 8

 Venus, the Jupiter, the Moon, the Mars and the Mercury 
 

 
We evaluated [Simo energy gravitational 

influence of the Mercury  on the Earth) average integral energy gravitational planetary influences 
corres

nenko, 2007] the relative (normalized on the maximal integral 
 1τ

ponding to the time duration  /2TMOON  of  the maximal integral energy gravitational influence of  the 
Moon on the Earth.  We took into account the time durations of the maximal integral energy gravitational 
influences on the Earth of the inner planets (the Mercury 1τ and the Venus 2τ ):   

                                         
)T-(T

TT
2
1=(i,3)t(i)T

iЗ

Зi*
1g = ,      (i = 1, 2),                                                      (3.115)  

which are the time durations of supplying of the cosmic planetary gravitatio l enna ergy from the inner planets 

maximal integral energy gravitational influences on the Earth of the outer planets (the Mars ,  the Jupiter 
(i=1, 2) to the focal region of the preparing earthquakes. We took into account the time durations of the 

4

5τ , the Saturn 6τ , the Uranus 7τ , the Neptune 8τ  and the Pluto 9τ ): 

                                         

τ

)T(T
TT

2
1=i)(3,t(i)T

3i

Зi*
1g = ,   (i = 4, 5, 6, 7, 8, 9)                                          (3.116)  

ing of the ic planetary
-

which are the time durations of supply cosm  gravitational energy from the outer planets 
(i = 4, 5, 6, 7, 8, 9) to the focal region of the preparing earthquakes. 
 We defined [Simonenko, 2007] and calculated the relative values  (normalized on the maximal s(i)
integral energy gravitational influence of the Mercury (i =1) on the Earth) of the maximal integral energy 
gravitational influences on the Earth of the planets of the Solar System (i = 1, 2, 4, 5, 6, 7, 8, 9). We 
evaluated [Simonenko, 2007] the relative (normalized on the maximal integral energy gravitational influence 
of  the Mercury (i =1) on the Earth) average values e(i)  of the integral energy gravitational influences on 

the Earth of  the  planets of the Solar System corresponding to the time duration  /2TMOON  of  the maximal 
integral energy gravitational influence of  the Moon o e Earth. This evaluation is given by the following n th
formula  [Simonenko, 2007]: 

                                                  
)i(T

0.5Ts(i)e(i)
g

MOON= , (i =1, 2, 4, 5, 6, 7, 8, 9).                                      (3.117)  

Using the expression (3.115) for the time  of supplying of the cosmic planetary gravitational 

planet

(i)Tg

energy from the inner planets (i=1, 2), the expression (3.116) for the time (i)Tg  of supplying of the cosmic 
ary gravitational energy from the outer planets (i = 4, 5, 6, 7, 8, 9) and the expression (3.117) for the 

relative average values e(i) , we calculated the following numerical values [Simonenko, 2007]: 
57.96(1)Tg =  days and 0.2547e(1) = (which is one order of magnitude smaller than 

.0693approx.) second s(Moon, 13= ) for the Mercury; 902.291(2)Tg =  days and 5342.4e(2) =  

r than  13.0693.)s(Moon,(which is smalle approx second = ) for the Venus; 0545.390(4)Tg =  days and 

 smaller than  13.0693.)s(Moon =  
4705.199(5)Tg =  da

0999.0e(4) =  (which is significantly ,
ys and 

approx second ) for the Mars;
3182.2e(5) =  (whi  than ch is smaller significantly
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 second oon, 13.0693prox.)s(M ap = ) for the  Jupiter;   069.189(6)Tg =  days and 0809.0e(6) =  

(which smaller than 13.0693approx.) d is significantly  s(Moon, secon = ) for the Saturn;  
001066.0 (which is four e magnitud

13.0693approx.) second s(Moon,
8506.184(7)Tg =  days and orders of th e smaller than e(7) =

= ) fo 7653r the Uranus; .183(8)Tg =  days and  

 (which is four-five orders of the magnitude smaller than  ,00025940e(8) =
13.0693approx.) second s(Moon, = ) for the Neptune; .183(9)Tg 3905=  days and 

(which is nine orders

-8101.16719) ⋅=  

 of the magnitude smaller than  13.0693approx.) second s(Moon,
e(

= )  for the Pluto.  
7]  the following o e of the pl r 

System and the Moon for the cosmic gravitational preparation of the strong earthquakes: the Venus 
( 6409.89s(2) = ), the Jupiter ( 319.31s(5) = ), th 13.0693 ),  the 

We established [Simonenko, 200 anets of the Solarder of significanc

e Moon (

Mars ( 6396.2s(4) = ), the Saturn  ( 036.1s(6)
approx.) second s(Moon, =

= ), the Mercury ( 1s(i) = ),  the Uranus 

( 29 ) and the lished 
[Simone em and the Moon 
re efined relative av : the Moon  ( 13.0693x.)s(M = ), 
the Venus ( 5342.4e(2) = ), the Jupiter   ( 3182.2e(5)

0133.0s(7) = ), the Neptune ( 0032.0s(8) = Pluto .1s(9) = ). We estab
] Syst

lated with the d erage values  second oon,

( 7104495 −⋅
nko, 2007   the different order of significance of the planets of the Solar 

 e(i) appro
= ), the Mercury ( 0.2547e(1) = ), the Mars 

( 0999.0e(4) = ), the Saturn ( 08.0e(6) = 09 ), the Uranus ( 001066.0e(7) = ), the Neptune 

 and t ⋅ ). T nt the obtained [

r the planets of the Solar System and the 
 second (Moon,

( 0.0e(8) = he Pluto ( e(9) = aking into accou Simonenko, 

2 values e(i)  fo numerical value 
13.0693rox.)s

002594 ) -8101.1671
007] numerical 

app =  [Simonenko, 20

he M
preparing by the combined integral ener

09; 2010] for the Moon, we established 
[Simonenko, 2009; 2010] the predominant significance of the Moon (along with the minor significance of 
the Venus, the Jupiter and t ercury) as the predominant cosmic trigger mechanism of the earthquakes 

gy gravitational influences on the Earth of the Venus, the Jupiter, the 
Moon, the Mars and the Mercury. 
 Taking into account the additional significant  results of Subsection 3.3, let us evaluated now the 
relative (normalized on the maximal integral energy gravitational influence of  the Mercury (i =1) on the 
Earth) average values (j)e  (correS sponding to the time duration  MOON  of  the maximal integral energy /2T
gravitational influence of  the Moon on the Earth) of the integral energy gravitational influences on the Earth 
of  the  Sun owing to the gravitational interaction of the Sun with  large planets jτ  8) 7, 6, 5,(j = .   the outer
This evaluation is based on the following formula: 

                                     
)j(T

0.5Tapprox.)first ,τs(Sun(j)e MOON
jS −= .    8) 7, 6, 5,(j

g

=                            (3.118)  

We take into account the time durations of the maximal integral energy gravitational influences on the Earth 
of the Sun owing to the gravitational interaction of the Sun with the outer large planets jτ   (the Jupiter 5τ , 

the Saturn 6τ , the Uranus 7τ  and the Neptune 8τ ): 

                                         
)T(T

TT
2
1=j)(3,t(j)T

3j

Зi*
1g = ,   8) 7, 6, 5,(j

-
=                                                  (3.11 )  

which are the time durations of supplying of the cosm

   9

ic solar gravitational energy from the Sun (owing to 
n of the Sun with the oute rge planets the gravitational interactio r la jτ ,  8 7, 6, 5,j = ) to the focal region of 

the preparing earthquakes. Taking into account the calculated relative values approx.)first ,τs(Sun j−  of 
the maximal integral energy gravitational influences of  the Sun on the Earth owing to the gravitational 
interaction of the Sun with the outer large planets jτ  8) 7, 6, 5,(j =  and using the expressions (3.118) and 

(3.119), we calculate  the following numerical values: 313.5305(5)eS =  (for the Sun owing to the Jupiter 

5τ ), .304769(6)eS =  (for the Sun owing to the Saturn .49517)6τ ), (7eS =  (for the Sun owing to the 

Uranus 7τ ) and .05847(8)eS =  (for the Sun owing to the t Nep une 8τ ). 
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Taking into acco ] numerical values 
st  numerical valu

unt the obtained [Simonenko, 2007 (i)  for the planets of the 
Solar Sy em, the e 13. 93approx.) second s(Moon,

e
06=  [Simonenko, 2009; 2010] for the 

Moon

), we establish the predominan

 (

3.4.3. The catastrophic planetary configurations of the cosmic seismology 
 

3.4.3.1. The catastrophic planetary configurations related with the maximal (positive) and  
m   

Earth  of the planets of the Solar System 

Taking on the Earth 
[Simonenko, 2007; 2009; 2010]  the maximal probabilities of a 
strong earthquakes (induced by the planetary and lunar energy gravitational influences on the Earth) are 
attaine

ration): the inner planets (the Mercury and the Venus) 
are in

oreover (in the second catastrophic configuration): the inner planets (the Mercury and the 
Venus

namic principle (consistent 
with t

where the tim nt  is related with the maximal (positive) combined integral energy

influence on the Earth  of the planets of the Solar System for the time moment 

 and the obtained  numerical values (j)eS  for the Sun (owing to the gravitational interaction of the Sun 

with the outer large planets jτ , j = t significance of the Sun (owing to 

the gravitational interactions of the Sun with the Jupiter 5τ  and  the Saturn 6τ ) and the Moon as the 
predominant cosmic trigger mechanism along with the minor significance of the Sun (owing to the 
gravitational interactions of the Sun with the Uranus 7τ  and  t  Neptune 8τ ), the Venus, the Jupiter and the 
Mercury) of the earthquakes preparing by the combined integral energy gravitational influences on the Earth 
of the Sun (owing to the gravitational interactions of the Sun with the Jupiter 5τ  and  the Saturn 6τ , the 

Uranus 7τ  and  the Neptune 8τ ), the  Venus, the Jupiter, the Moon, the Mars and the Mercury. 
 

 
 

8 7, 6, 5,

he

inimal (negative) combined integral energy gravitational influence on the
τ3

 
into account the considered planetary and lunar energy gravitational influences 

, we established [Simonenko, 2009; 2010] that

d in two catastrophic planetary configurations: 
a) when the Sun, the Moon, the inner planets (the Mercury and the Venus) and the outer planets  (the 

Mars, the Jupiter, the Saturn, the Uranus, the Neptune and the Pluto) are aligned in a straight line with the 
Earth, and moreover (in the first catastrophic configu

 close conjunctions  with the Earth (and simultaneously in mutual close opposition), the outer planets  
(the Mars, the Jupiter, the Saturn, the Uranus, the Neptune and the Pluto) are in close oppositions with the 
Earth and the Moon in full moon or in new moon configuration depending on the temporal orientation of the 
lunar orbit; 

b) when the Sun, the Moon, the inner planets (the Mercury and the Venus) and the outer planets  (the 
Mars, the Jupiter, the Saturn, the Uranus, the Neptune and the Pluto) are aligned in a straight line with the 
Earth, and m

) are in close oppositions with the Earth, the outer planets  (the Mars, the Jupiter, the Saturn, the 
Uranus, the Neptune and the Pluto) are in close conjunctions with the Earth and the Moon in new moon or in 
full moon configuration depending on the temporal orientation of the lunar orbit. 

These two (shown on Fig. 11 and Fig. 12) catastrophic planetary configurations a) and b) are deduced 
from the global prediction thermohydrogravidynamic principles. The catastrophic planetary configuration a) 
(shown on Fig. 11) is founded based on the global prediction thermohydrogravidy

he generalized differential formulations (1.43) and (1.50) of the first law of thermodynamics of the 
established cosmic seismology [Simonenko, 2007; 2008; 2009; 2010]) associated with the maximal 
(positive) combined planetary integral energy gravitational influence on the Earth: 

                       •== ∫ tmomenttimeformaximumlocal
t

t
pp

0

dG(t)∆G ,                                       (3.120)  

•e mome  gravitational 
•= tt

t

3τ : 
 

                                
⎪⎭

⎪
⎬
⎫⎪

⎨
⎧

′∂
== ∑ ∫ ∫∫∫∗

9 t
3i

p tρdV)dψ(max(t)∆Gmax)(∆G t .   
⎪⎩ ′∂≠= 3i1,i t τ

ttp

0 3
t

                             (3.121)  
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 of the planets of the Solar System 
 

The on e global 
prediction thermohydrogravidynamic principle (consistent with the generalized differential formulations 
(1.43) and (1.50) of the first law of thermodynamics of the established cosmic seismology [Simonenko, 
2007; 

the minimal (negative) combined integral energy gravitational 
influenc  of the planets of the Solar System for the time mo

 
Fig. 11. The catastrophic planetary configuration a) characterized by the maximal (positive) combined 

integral energy gravitational influence on the Earth 3τ

 
 catastrophic planetary configuration b) (shown  Fig. 12) is founded based on th

2008; 2009; 2010]) associated with the minimal (negative) combined planetary integral energy 
gravitational influence on the Earth: 

                       ∗== ∫ tmomenttimeforminimumlocal
t

t
pp

0

dG(t)∆G ,                                        (3.122)  

where the time moment  is related with ∗t
e on the Earth ment •= tt : 3τ

 

                                   
⎪⎭

⎪
⎬
⎫⎪

⎨
⎧

′
′∂

∂
== ∑ ∫ ∫∫∫•

9 t
3i

tptp tρdV)d
t
ψ(min(t)∆Gmin)(∆ t .       

⎪⎩ ≠= 3i1,i t τ0 3

G                            (3.123)  

bined 
 

3.4.3.2. The catastrophic planetary configurations related with the maximal (positive) and  
minimal (negative) combined integral energy gravitational influence on the  

Earth  of the Sun and the planets of the Solar System 

Taking e additional 
(considered in Subsectio ve on the Earth (owing to 
the gravitational interaction of the Sun with the outer large planets 

 
Fig. 12. The catastrophic planetary configurations b) characterized by the minimal (negative) com

integral energy gravitational influence on the Earth 3τ  of the planets of the Solar System
 

9τ
8τ 7τ

6τ
5τ

4τ 3τ
2τ

0τ

1τ

2τ
3τ

4τ
5τ

6τ7τ8τ
9τ

0τ

1τ

 
 
 

3τ
 

into account the considered planetary [Simonenko, 2007; 2009; 2010] and th
n 3.3) ry significant solar energy gravitational influences 

jτ , 8 7, 6, 5,j = ), we establish that the 
global

e y and sol

 planetary cataclysms (accompanied by the finite change of the space orientation of the Earth’s axis, 
the irreversible deformation of the Earth’s surface and by the strong catastrophic earthquakes)  are attained in 
two catastrophic planetary configurations (determined by the plan tar ar energy gravitational 
influences on the Earth) shown on Fig. 13 and Fig. 14, respectively.  
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of the Sun (due to the gravitational interactions of the Sun 

These planetary
from the global prediction therm vidyn  The nfigurations 1 
(shown on Fig. 13) is founded based on the global prediction thermohydrogravidynamic principle (consistent 
with t

where the tim nt  is related with the maximal (positive) com

energy gravitational influence on the Earth  for the time moment 

 
Fig. 13.  The catastrophic planetary configuration 1 determined by the maximal combined integral energy

gravitational influences on the Earth )(τ3

)(τ0 with the Jupiter ,)(τ5  the Saturn ,)(τ6  the Uranus ),(τ7 and the Neptune )(τ8 ), the Mercury ,)(τ1  

the Venus ,)(τ2  the Mars ) and the Jupiter )(τ5 aligned in a straight line  
 

two (shown on Fig. 13 and Fig. 14) catastrophic  configurations 1  and 2 are deduced 
ohydrogra amic principles.  catastrophic planetary co

 (τ4

he generalized differential formulations (1.43) and (1.50) of the first law of thermodynamics of the 
established cosmic seismology [Simonenko, 2007; 2008; 2009; 2010]) associated with the maximal 
(positive) combined integral energy gravitational influence on the Earth of the planets of the Solar System 
and the Sun (owing to the gravitational interaction of the Sun with the outer large planets jτ , 8 7, 6, 5,j = ): 

                       •== ∫ tmomenttimeformaximumlocal
t

t0

dG∆G(t) ,                                           (3.124)  

e mome bined planetary and solar integral •t

3τ
•= tt : 
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tρdV)d
ψ

(tρdV)d
t
ψ(ax∆G(t)max)∆G(t .                    (3.125)  

′τ3
t

m

The catastrophic planetary configuration 2 (shown on Fig. 14) is founded based on the global 
iction thermohydrogravidynamic principle (consistent with the generalized diffe

(1.43) and (1.50) of the first law of thermodynamics of the established cosmic seismology [Simonenko, 
2007; 

where the time moment  is related with the minimal (negative) combined planetary and solar integral 
energy gravitational influence on the Earth  for the time moment 

pred rential formulations 

2008; 2009; 2010]) associated with the minimal (negative) combined planetary and solar integral 
energy gravitational influence on the Earth: 

                       ∗== ∫ tmomenttimeforminimumlocal
t

t0

dG∆G(t) ,                                            (3.126)  
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Fig. 14.  The catastrophic planetary configuration 2 determined by the minimal combined integral energy 
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gravitational influences on the Earth of the Sun (due to the gravitational interactions of the Sun 

with the Jupiter  the Saturn  the Uranus and the Neptune ), the Mercury

the Venus  the Mars and the Jupiter aligned in a straight line 
 
 

We can state (according to cosmic geophysics) without any doubt that all previous global planetary 
cataclysms (accompanied by the finite change of the space orientation of the Earth’s axis, the irreversible 
eformation of the Earth’s surface and by the strong catastrophic earthquakes) were occurred  during a time 

narro lated two tellat  dou  tha
 glob y ca pan f the space orientation of the 

 Ear rong catastrophic earthquakes) 
will be related with the time periods of the satisfactory realization of the catastrophic planetary 
configurations (shown on Fig. 13 and Fig. 14) of the plan

ed  
differential formulation of the first law of thermodynamics  

 
  

  p   
thermohy ized 
differential form gion. Using 
the evolution equitation (1. s   (the macroscopic 
ontinuum region  ) of the Earth, we shall show now that the formation of fractures (modeling by the 
mps o the 

macrosc the 
analysis of fo ntinuum 
velocity jump) inside of the 

)(τ3

)(τ0 ,)(τ5 ,)(τ6 ),(τ7 )(τ8  ,)(τ1  

,)(τ2 )(τ4 )(τ5

d
periods of the satisfactory realization of the catastrophic planetary configurations (shown on Fig. 13 and Fig. 
14) of the planets and the Sun  aligned approximately in a straight line, when  the planets and the Sun  are 
visible (especially, for catastrophic planetary configuration 1 shown on Fig. 13) from the Earth within the 

w angle range (re  with one or zodiacal cons ions). Without any bt,  we can state t  
all future  al planetar taclysms (accom ied by the finite change o
Earth’s axis, the irreversible deformation of the th’s surface and by the st

ets and the Sun  aligned approximately in a straight 
line.  

Thus, taking into account the obtained results of this Subsection 3.4.3 and the founded [2007; 2009; 
2010] galactic energy gravitational genesis (considered in Section 2) of the time periodicity of 100 million 
years [Hofmann, 1990] of the maximal endogenous heating of the Earth (explained by the periodic 
deformation of the Earth due to the periodic energy gravitational influences on the Solar System of the center 
of our Galaxy), we solve the major Wegener’s problem (Wegener, 1929) by finding the predominant cosmic 
energy gravitational influences on the Earth (of the center of our Galaxy and the Solar System) capable of to 
break up the supercontinent Pangaea and responsible for the subsequent continental drift.  

 
 
 

3.5. The generalized thermohydrogravidynamic shear-rotational, classical  shear (deformational) 
and rotational models of the earthquake focal region τ,  and the local energy and entropy 

prediction thermohydrogravidynamic principles determining the fractures 
formation in the macroscopic continuum  region τ  

 
 

3.5.1. The generalized thermohydrogravidynamic shear-rotational and the classical  shear 
(deformational) models of the earthquake focal region based on the generaliz

Following the works [Simonenko, 2007a; 2007; 2008], we resent the foundation of the generalized
drogravidynamic shear-rotational model of the earthquake focal region based on the general

ulation (1.53) th uake focal re of the first law of thermodynamics used for the ear q
67) of the total mechanical energy of the subsy tem τ

τc
ju f the continuum velocity on some surfaces) are related with irreversible dissipation  of 

opic kinetic energy and the corresponding increase of entropy. We consider at the beginning 
rmation of  of the co the main line flat fracture (associated with the surface )τ(F1

macroscopic continuum region τ  (bounded by the closed surface τ∂ ). The 
macroscopic continuum  region  may be divided into two subsystem  and   continuing  mentally τ  1τ 2

the surface )τ(F1  by means of surface )τ(R1  crossing the surface τ
τ  by

∂  of the macroscopic region τ . The 
surface of the subsystem 1τ  consists of the surface  1τ)(∂  (which is the part of the surface τ∂ ) and the 
surfaces  )τ(F1  and  )τ(R1 . The surface of the subsystem 2τ  consists of the surface 2τ)∂  (which is the 
part of the surface τ∂ ) and the surfaces )τ(F1  and )τ(R1 .  

 

(
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 containing two subsystem  and   interacting on 
the surface  of the tangential jump of the continuum velocity 

 
 
Using the formulation (1.67), we have the evolution equations for the total mechanical energies of the 

macroscopic subsystems  and :  

                                   

 
Fig. 15.  The macroscopic continuum  region τ  1τ 2τ

)τ(F1

 1τ 2τ

)K(
dt
d

11 ττ π+  = dt
d

 Vρdψ
2
1

1

 = pdiv∫∫∫ +

τ

2∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ +v
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v

=       

Vd ( ) Vddivη-η
3
2 2

v∫∫∫ ⎟
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ij∫∫∫ Vd
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+ ( )( )∫∫
∂

Ω⋅⋅
1)τ(

d nTnv +               

           + ( )( )∫∫ Σ⋅⋅
)τ(F

111

1

1
d)τ( ζTζv  + ( )( )∫∫ Σ⋅⋅ 111 1

d)τ( ζTζv  +
)τ(R1

Vρdψ
∫∫∫ t

1τ
∂
∂

,                  (3.128)  

                             )K(
dt
d

22 ττ π+  = dt
d

 Vρdψ
2
1

2τ

2∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ +v =          

  = +Vdpdiv
2τ
∫∫∫ v ( ) Vddivη-η

3
2

2τ

2
v∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ v - ( ) Vρdeν2

2τ

2
ij∫∫∫ + ( )( )∫∫

∂

Ω⋅⋅
2)τ(

d nTnv -        

        - ∫∫ -( )( ) −Σ⋅⋅
)τ(F

121

1

1
d)τ( ζTζv ( )( )∫∫ −Σ⋅⋅

τ)(R
121

1

1 +d)τ( ζTζv Vρd
t
ψ

2τ
∫∫∫ ∂

∂
,                 (3.129)  

where 1  is the external unit norm stem 

ζ
ζ al vector of the surface (of the subsy ) presented by surfaces 

and , -  is the external unit normal vector of the surface (of the subsystem ) presented also by 
surfaces  and . Adding the equations (3.128) and (3.129) (by using the equality 

ζ =  of the elements of area of surfaces  and we get the evolution eq for 

the total mechanical energy
121 ττττττ πππ

1τ )τ(F1  

)τ(R1 1  2τ
)τ(F1 )τ(R1

1
dΣ ), uation 1

d ζ−Σ )τ(F1 )τ(R1

 )KK()K(
2

+++=+  of the macroscopic region 

ting from subsystems  and  interacting on the surface F1  of the tang
continuum velocity: 

τ  

consis τ τ( ential jump of the  1τ 2 )

τ1 

τ2 

F1 1) (τ

R1 (τ) 

R1 (τ) 
2τ)(∂

1τ)(∂

21 τ)(τ)(τ ∂∪∂=∂  
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                                       ( )πττK
dt
d

+  = dt
d Vρdψ

2
1

τ

2∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ +v =        

+Vdpdiv
τ
∫∫∫ v ( ) Vddivη-η                    = 3

2

τ

2
v∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛

-v ( )ij∫∫∫ +         

      + ( )( )∫∫
∂

Ω⋅⋅
τ

d nTnv +

Vρdeν2
τ

2

( )( )∫∫
)τ(

1211 d))τ()τ( Tζvv +Σ⋅⋅−
F

1

1

1
( ζ Vρd

t
ψ

τ
∫∫∫ ∂

∂
,            (3.130)  

where  is the vector of the continuum velocity on the surface  in the subsystem ,  
uum velocity on the surface  in the subsy .   

The evolution equation (3.130) takes into account the total mechanical energy 
πππ +++=+  of the macroscopic region  consisting from subsystems

 of the tangential jump  velocity  in 
the second row (of the equation (3.130))  describes the evolution of the total mechanical energy of the 

scopic continuum region  due to the continuum reversible compressibility, the seco
the macroscopic kinetic energy by

irreversible continuum compressibility and the velocity shear. The forms of three terms in the second row (of 
e co wtonian

e third row (of the equation (3.130)) are the universal 
terms 
express the power  

)τ( 11v )τ(F1  1τ )τ( 21v  
is the vector of the contin stem τ)τ(F1 2

)KK()K(
2121 ττττττ

and  interacting on the surface  of the continuum .  The first term

τ  1τ  

2τ )τ(F1

macro nd and the third 
terms in the second row expresses the dissipation of  means of the 

τ

the equation (3.130)) are related with the considered model of th mpressible viscous Ne  
continuum. The fourth, fifth and the sixth terms in th

for arbitrary model of continuum characterized by symmetrical stress tensor Т . The fourth term 

                              == ∂∂ tδAW ,npτnp, d/τ
( )( )∫∫

∂

Ω⋅⋅
τ

d nTnv                                                     (3.131)  

of external (for the continuum region τ ) non-potential stress forces acting on the boundary surfaces τ∂  of 
the macroscopic continuum region τ . The fifth term express the power of external (for the continuum region 
τ )  forces  on  different sides of the velocity jumps during the fractures formation on the surfaces )τ(Fi . The 
sixth term in equation (3.130) presents the power of the total  mechanical energy added (or lost) as the result 
of the Newtonian non-stationary gravitational energy influence on the macroscopic continuum region τ  
related with variations of  the potential ψ  of the gravity field in the continuum region τ

Consider the 
.  

equation (3.130) for one continuum velocity jump on the non-stationary surfaces 
terval . We calculated [Simonenko,

formation of the surface dislocation. Taking into account the form of fifth term on the right-hand side of the 
(do

b

(                  (3.132)  

1

o, 20 ] the energy , which dissipates 

during formation of the surface dislocation on the small surface 

)τ(F1  
during the time in  2007] the energy dissipation during t) t(t, ∆+

evolution equation (3.130), we obtained [Simonenko, 2007] the expression for the work )τ(Fnp, 1
δA  ne 

during the time interval t) t(t, ∆+  y the external (for the continuum region τ ) non-potential stress forces 
acting on different sides of the velocity jump on the surface )τ(F1 ): 

                            )τ(Fnp,δA = ( ) dt,d))τ()τ(
tt

12111 1∫ ∫∫
∆+

⎟
⎟
⎞

⎜
⎜
⎛

Σ⋅⋅− ζTζvv           
1

t )τ(F1 ⎠⎝
which reduces to  the following expression (after transposition of integration order): 

                               )τ(Fnp, 1
δA = ( )∫∫ ∫ Σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅−

∆+

)τ

tt

t
12111 1

ddt))τ()τ(( ζTζvv .                           (3.133)  

 To test the formula (3.133), we calculated [Simonenk 07

( )

(F

 ∆Σnp,δA
∆Σ  during the time interval t) t(t, ∆+ . 

Using the theorem e, we obtained 
[Simonenko, 2007

 about the average value and integrating the internal integral on tim
] from relation (3.133) for )τ(F1 =∆Σ  the following relation: 



( )∫∫ >⋅<⋅+−−+ d)()∆tt,()∆tt,(( Tζζwζw
∆Σ

Σ                      δA =∆Σnp, 1111 ζ ,                (3.134)  

 is the average value of the stress vector for the element of ar ζwhere >⋅< )( Tζ ea  dΣ  of the two-side 1 1

surface ∆Σ , )∆tt,( 1 +ζw  and )∆tt,( 1 +−ζw  are the vectors of the con displacement  on 

different sides of the element of area 
1

d ζΣ  of the two-side surface 

tinuum 

∆Σ  in the points characterized by 

normal unit vectors  1ζ  and - 1ζ . Using the obvious expression for “linear” time average  >⋅< )( Tζ : 1

>⋅< )( 1 Tζ = ( )∆tt,()t,((
2
1

11 +−− ζpζp  
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                                       )                      

etical average of th  the surface of the 

                  (3.135)  

as the arithm e values of the stress vectors  on the different sides from
jump of the continuum velocity, we obtained [Simonenko, 2007]  the expression for the elementary work of 
the external non-potential stress forces on the two-side surface 

p

∆Σ   of dislocation: 

∆Σnp,δA = ( ) ( ) .d)∆tt,)t,(()tt,)∆tt,((1
1111∫∫ ((

2 1
∆Σ

−−ζ

 544] to formation 
of surface dislocations in rigid compressible continuum on the small area of surface . It is clear that the 

d only for weak tangential jumps of the continuum

stress forces  should be negative. The sufficient energy  needed for form
rnal forces in the macroscopic continuum region 

rotational inetic energy of shear-

rotational coupling  (of the subsystem τ )  are the significant components of the macroscopic 

nal shear tational ki c energy   [Simo o, 2004; 2005; 200 007a; 2

t energy of the m  region  and the 

Σ++⋅∆+−+ ζζpζpwζw       (3.136)  

This expression was obtained in the frame of the classical linear approach [Sedov, 1994; p.
∆Σ

suggestion (3.135) is vali  displacement. Consequently, we 
can consider the expression (3.132) as the natural nonlinear generalization of the expression  (3.136) for 
arbitrary surface )τ(F1  of dislocation and for strong  tangential jumps of the continuum displacement on the 
surface )τ(F1  of dislocation. The work (3.132) of the external (for the continuum region τ )  non-potential 

 )τ(Fd, 1
δE ation of the surface )τ(F1  

of dislocation is equal to the work of the inte τ . The energy 

)τ(Fd, 1
δE    should be positive and equal to the expression (3.132) with the sign “-”: 

      )τ(Fd, 1
δE =- )τ(Fnp, 1

δA = - ( )( ) 0.dtd))τ()τ((
tt

t )(F
12111

1

1
>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Σ⋅⋅−∫ ∫∫

∆+

τ
ζTζvv                   (3.137)  

The formulae (3.132),  (3.136) and (3.137) are obtained (taking into account the generalized differential 
formulation (1.43) of the first law of thermodynamics) for the model of continuum characterized by the 
arbitrary symmetrical stress tensor Т .   

The macroscopic internal shear kinetic energy 
1τs )(K  (of the subsystem 1τ ),  the macroscopic internal 

 kinetic energy 
1τr )(K   (of the subsystem 1τ ) and the macroscopic k

1τ
coup

rs, )(K  1

inter -ro neti 007; 2008]:  
1τr-s )(K nenk 6, 2

                                                           
1τr-s )(K =

1τr +
1τs 1τrs, )(K                                             (3.138)  

taken into account (along with the classical internal thermal energy 
1τ

U  of the macroscopic continuum 

region 1τ , the macroscopic poten ial 

)(K )(K + coup

1τ 1

macroscopic translational kinetic energy 

π  acroscopic continuum τ

2
τcττt 111

)m
2
1)(K =  of the continuum region 1τ  (of a mass 

1τ
m  

) moving as a whole at speed  equal to the speed 
1τc )(  of the center of mass of  the continuum region 1τ ) 

in the generalized differential formulation (1.43) of the first law of thermodynamics for the macro
τ

(V

s

 kinetic ergy )  (of the subsy

cro

V
copic 

continuum region 1 .  
The macroscopic internal shear  en (K stem τ ), the macroscopic internal  

2τs 2

rotational kinetic energy )(K   (of the subsystem τ ) and the ma scopic kinetic energy of shear-
2τr 2
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a

  [Simonenko, 2 0

                                                           + )(K                                           (3.139)  

acroscopic potential energy  of the m  region  and the 

macro

rotational coupling 
2τ

coup
rs, )(K  (of the subsystem )  are the significant components of the m croscopic 

internal shear-rotational kinetic energy (K 004; 2005; 2006, 2007a; 20 7; 2008]: 

2τr-s 2τs 2τrs,

taken into account (along with the classical internal thermal energy 
2τ

U  of the macroscopic continuum 

region 2τ , the m π

 2τ

2τr-s )

)(K =
2τr )(K )(K + coup

2τ
acroscopic continuum 2τ

scopic translational kinetic energy 2
ττt 22

)m
2
1)(K =  of the continuu  region 2τ  (of a mass 

2τ
m  

2τc 2

in the generalized differential formulation (1.43) of the first law of thermodynamics for the macroscopic 
continuum region 2τ .  

cτ2
(V m

) moving as a whole at speed  equal to the  speed  of the center of mass of  the continuum region 

 kinetic ergy  (of the subsy

g 

)(V τ ) 

The macroscopic internal shear  en K stem 1τ ),  the macroscopic internal  
1τs )(

rotational kinetic energy 
1τr )(K   (of the subsystem 1τ ), the macroscopic kinetic energy of shear-rotational 

couplin
1τ

coup
rs, )(K  (of the subsystem the macroscopic translational kinetic energy 1τ ), 

2
τcττt 111

)(m
2
1)(K V=  (of the subsystem potential energy 

1τ
π  (of the subsystem 

the macroscopic internal shear kinetic energy (K (of the subsystem 2τ ),  the macroscopic internal 

rotational kinetic energy 
2τr )(K   (of the subsystem 2τ ),  the macroscopic kinetic energy of shear-rotational 

coupling coup )(K  

1τ ), the macroscopic ),  

 

 subsystem ), the macroscopic translational kinetic energy 

1τ

2τs )

2τrs, 2(of the τ

2
τcττt 222

)(m
2
1)(K V= (of the subsystem 2τ ) and the macroscopic potential energy 

2τ
π (of the subsystem 

2τ ) are the significant energy components taken into account in the presented thermohydrogravidynamic 

acroscopic region τ nsisting from interacting subsystems  and 2τ .  
Using of the generalized differential form n (1.43) of the first law of thermodynamics for the 

macroscopic continuum region τ  of the Earth’ by practically constant viscosity, we 
obtained [Simonenko, 2007a; 2007; 2008]  the the odynamic foundation of the classical deformational 
(shear) model ov, 1997] of the earthquake ocal region for the quasi-uniform medium of the Earth’s 
crust characterized by practically constant viscosity

3.5.2. The rotational model of the earthquake focal region based 
 on the generalized differential formulation 

 of the first law of thermodynamics  

 
shear-rotational  the evolution equation (3.130) for the total mechanical energy 

ττ π+  of the m
ulatio

s crust characterized 
rm

[Abram  f
.  

 
  
 

o

ss dislocation in the uniform continuum  [Shamsi and 
tacey, 1969; Mount and Suppe, 1987; Guo, 1988].  

The analysis [Vikulin, 2003; p. 58] showed that the conditions exist to realize the rotational 
echanism related with the rotation of the geo-blocks by means of the stress forces related with the Earth 

rotation in the vicinity 3; p. 58]  that the 
rotational mechanism can be m echanism related with the 
formation of the main line flat fractur

 

model described by
)K(  co  1τ

 
 Following the works [Sim nenko, 2007a; 2007; 2008], we present the foundation of the rotational 
model [Vikulin, 2003] of the earthquake focal region for the seismic zone of the Pacific Ring. It was noted 
[Vikulin, 2003] that the studies of the dislocation models of the focal regions of strong earthquakes showed 
the bad correspondence with the model of flat endle
S
 
m

 of the seismic zone of the Pacific Ring. It was noted  [Vikulin, 200
ore real in compared to the conventional m

e inside of the focal region. 
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Fig.  consisting from the subsystems  and  interacting on 

the surface  of the geo-block 
  
We considered [Simonenko, 2007a; 2007; 2008; 2009; 2010] the energy thermodynamic rotational 

mechanism [Vikulin, 2003] (of the earthquake focal region) related with formation of the circular continuum 
velocity jump revealed in the form of circular dislocation after relaxation of the seismic process in the 
earthquake focal region. The developed and tested mathematical formalism of description of the main line 
flat fracture was generalized [Simonenko, 2007a; 2007; 2008; 2009; 2010] for the closed surfaces of the 
continuum velocity jumps.  

Following to the rotational model [Vikulin, 2003] of the earthquake focal gion, we considered 
t

gravitational forces (on the geo-block ) and the non-potential stress 

forces n the boundary  of the geo-block ) exceed the certain critical value then  the geo-block may 

  

 
16.  The macroscopic continuum region τ  intτ extτ

iτ∂ intτ  

re
[Simonenko, 2007a; 2007; 2008; 2009; 2010] he separate geo-block intτ  of the seismic zone. If the external 

influences of the non-stationary intτ
(o  iτ∂ intτ

rotate and slip relative to the surrounding fine plastic layer (subsystem)  extτ  with the tangential continuum 

velocity jump on the boundary surface iτ∂  of the geo-block intτ . We assumed [Simonenko, 2007a; 2007; 

2008; 2009; 2010]  that fine plastic layer (subsystem)  extτ  is limited by external surface τ∂  of the 

considered thermodynamic system τ consisting from the macroscopic subsystems τ  and τ . int ext

Using the evolution equitation (1.67) of the total mechanical energy of the subsystem  τ , we derived 
[Simonenko, 2007a; 2007; 2008; 2009; 2010] the evolution equations for the total mechanical energy of the 
macroscopic subsystems  intτ  and  extτ :  

                                   ( )π
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+  = dt
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⎠
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∫ v +                  = ∫∫ Vdpdiv
extτ

( ) Vddivη-η
3
2

extτ

2
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⎠
⎞

⎜
⎝
⎛ v - ( ) Vρdeν2
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)
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d nT  -

                           (3.141)  

Vρd
t
ψ

extτ

( )( )∫∫
∂

−Σ⋅⋅∂
iτ

iext d)τ( mT                      + ((∫∫ ⋅ nv ) ∫∫∫ ∂v m +
∂

,  

where  is the external unit normal vector of the surface  m  iτ∂  of the subsystem , -  is the internal 

f the surfaces hi   limits the  subsystem rom within,  is the external 

unit normal vector of the surfaces ,  

 intτ m
unit normal vector o , w ch  extτ  f iτ∂ n

τ∂ )τ( iint ∂v  are  the velocities vectors on the inner side of the surface 

bsystem ,   are the velocities ve tors on th r sidiτ∂  in the su v c e of the surface iτ intτ )τ( iext ∂ e oute ∂  in the 

subsystem .  
the evolution equatio  (3.140) and (3.141) and using the condition of equality 

= of the area elements of the surface 

 extτ
Adding ns

mΣd m−Σd  iτ∂ , we obtained [Simonenko, 2007a; 2007; 2008; 

and
2009; 2010] the evolution equation for the total  mechanical energy of the macroscopic continuum region τ  
consisting from the subsystems intτ  extτ  interacting on the surface  iτ∂  of the continuum velocity jump: 

                                     ( )πτK τdt
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+  =
d

 dt
Vρdψ
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3τ

v∫∫∫ ⎠⎝
-

2 2⎟
⎞

⎜
⎛ v ( ) Vρdeν2 ( )( )∫∫
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∂τ
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           +

Ω⋅⋅ dTnv

( )( )∫∫
∂

Σ⋅⋅∂−∂
iτ

iextiint d))τ()τ(( mTmvv + Vρd
t
ψ

τ
∫∫∫ ∂

∂
.                               (3.142)  

The equation (3.142) is analogous to equation (3.130). The energy needed for formation of the 
mps (on the surfaces 1  and continuum velocities ju F )τ( iτ∂ ) are related with the penultimate terms in the 

Similarly to expression  (3.137), we obtained [Simonenko, 2007a; 2007; 2008; 2009; 2010] the 
pression for th ufficient energy nee d for rotation of t  subsystems  during the time 

interval   relative to the surrounding fine plastic layer (subsystem)   (with the tangential 

con elocity jump

right-hand sides of equations (3.130) and (3.142).  

ex e s de he 
iτ d,δE ∂   intτ

t) t(t, ∆+ extτ

 ))τ()τ(( iextiint ∂−∂ vv iτ∂  of the geo-block intτ ): tinuum v on the boundary surface 

       
iτd,δE ∂ =-

iτnp,δA ∂ =- ( )( ) 0dtd))τ()τ((
t τ

iextiint

i

>⎟
⎟
⎠

⎜
⎜
⎝

Σ⋅⋅∂−∂∫ ∫∫
∂

mTmvv .              (3.143)  

∆tt ⎞⎛+

[Simonen  (gi

d energy (g .13 ents of 
the rock continuum on different sides of the analyzed different jumps of the continuum displacements (the 

d dislo on and t main line flat fracture) have the same order of magnitude  an
area of the main line flat fracture is not exceed 10.  

Taking into account the information [Vikulin, 2003] that the critical continuum stresses (required for 
rotation of the geo-block intτ  weakly coupled with the surrounding plastic layer eτ ) are less than the 
critical continuum stresses required to split the mountain rock by forming the main line flat fracture, we 
concluded ko, 2007; 2008; 2009; 2010] that the required energy δE ∂ ven by the expression 

(3.143)) is less than the re iven by the expression (3 7)) if the displacem

xt

iτd,

quire  )τ(Fd, 1
δE  

close cati he d the ratio of the 
surfaces area of the closed dislocation to the surfaces 

This thermodynamic energy consideration showed [Simonenko, 2007; 2008; 2009; 2010] the 
preferable realization of the rotational motion of the geo-block intτ  (under the existence of the surrounding 

plastic layer around the geo-block intτ ) as compared with formation of the of the main line flat fracture 
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the vortical structures of the lithosphere of Earth [

combined integral energy gravitational influences of the planets of the Solar System,  
the Moon and the Sun owing to the gravitational interaction of the Sun with the outer 

 
Fo  

predicti  
rotational m zation 
of the shear [Abram  and the shear-rotational [Simonenko, 2007] motions (for uniform continuum) 
resulted to e 
fractures form or 
the considere  the 
fracture f

Th ation 
in the considered m  gravitational 
influe

          

inside the geo-block intτ . This result explains the rotational  motions of the geo-blocks in the seismic zone of 
the Pacific Ring [Vikulin, 2003] and Vikulin and 
Melekestcev, 2007] and the lithospheres of the planets [Tveritinova and Vikulin, 2007] of the Solar System.  

 
 

3.5.3. The local energy and entropy prediction thermohydrogravidynamic principles 
determining the fractures formation in the macroscopic continuum region τ  

subjected to the combined integral energy gravitational influences of the planets of the Solar 
System, the Moon and the Sun owing to the gravitational interaction of the Sun with the  

outer large planets (the Jupiter, the Saturn,  the Uranus and the Neptune)  
 

3.5.3.1. The local energy prediction thermohydrogravidynamic principles determining the 
fractures formation in the macroscopic continuum region τ  subjected to the  

 large planets (the Jupiter, the Saturn,  the Uranus and the Neptune) 

llowing the works [Simonenko, 2007a; 2007; 2008; 2009; 2010], we can formulate the local energy
on thermohydrogravidynamic principle of the fractures formation. The preferable realization of the

otion [ ealiVikulin, 2003] (within the seismic zone of the Pacific  Ring) and the preferable r
ov, 1997]

 the formulation [Simonenko, 2007a; 2007; 2008; 2009; 2010] of the general principle of th
ation: the fracture forms on a surface where the  external (combined cosmic and terrestrial f

d macroscopic continuum  region τ ) energy gravitational influence is sufficient to produce
ormation.  
e local e ctures formnergy prediction thermohydrogravidynamic principles (determining the fra

acroscopic continuum region τ  subjected the combined integral energy
nce of the planets of the Solar System, the Moon and the Sun owing to the gravitational interaction of 

the Sun with the outer large planets) of the cosmic seismology [Simonenko, 2007; 2008; 2009; 2010] can be 
formulated mathematically as follows:    

                                                            == ∫
t

to

dGt),∆G(τ               

            ,Vρd
t

dt
t τ0

=
∂

= ∫ ∫∫∫ tmomenttimeformaximumlocal                                 (3.144) 

and   

                                                     

t

∆G(τ,

ψ ∗∂

to

dGt)                               

                      

t

== ∫

,Vρd
t
ψt ∂dt

t τ0

∗=
∂

= ∫ ∫∫∫ tmomenttimeforminimumlocal                                        (3.145)  

which can be reformulated (under the more weak mathematical requirement) as  follows:   

                                                                  (3.146)  

and   

                               

 

,0))G(τ(dGt)∆G(τ, p
cr

t

t o

>∆≥= ∫

                                                              (3.147)   ,0))G(τ(dGt)∆G(τ, n
cr

t

t o

<∆≤= ∫  
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integral energy 
on the  macroscopic continuum  region  to produce the fractures inside  the  

macroscopic continuum  region is the negative crit ic and
rial) integral energy gravitational influence on the  macroscopic continuum  region  to produce the 

fractures inside  the  macroscopic continuum  region 
 
 

3.5.3.2. The local entropy prediction thermohydrogravidynamic principle  

 
 
Taking into account the fundamental physical dis nction [Planck, 1930; Prigogine, 1977] between 

the classical “rever
non-equilibrium ki d relation  
[Simonenko, 2006   
                                          (3.148)  

extending the classical  of the one-
component macrodifferential
                                                                          

where 
p
cr))G(τ(∆  is the positive critical value of the combined (cosmic and terrestrial) 

gravitational influence τ
τ , 

n
cr))G(τ(∆  ical value of the combined (cosm  

τ
τ . 

determining the fractures formation in the macroscopic continuum 
  region τ subjected to the combined integral energy gravitational influences  

of the planets of the Solar System, the Moon and the Sun owing to the 
 gravitational interaction of the Sun  with the  outer  large planets  

(the Jupiter, the Saturn,  the Uranus and the Neptune) 

terrest

ti
sible” macroscopic rotational [de Groot and Mazur, 1962] and “irreversible” macroscopic 
net lizeic energies [Simonenko, 2004], we deduced (in 2005) the genera

; 2006a]:
                ϑpd-Tds)(τdε)(τdε-)(τdεdu coup

rs,sr =−+                              

s[Gibbs, 1873] relation (for the differential ds  of entropy per unit mass 
 deformed continuum element with no chemical reactions): 

ϑpd-Tdsdu =                                                              (3.149)  
by taking into account the total differentials )(τdε r , )(τdεs  and )(τdεcoup

rs,  (following the continuum 
substance of the small macroscopic continuum region τ ) of the classical macroscopic internal rotational 
kinetic energy per unit mass )(τε r  [de Groot and Mazur, 1962], the macroscopic internal shear kinetic 

)(τεenergy per unit mass s  [Sim ernal kinetic energy of a shear-onenko, 2004; rosc

, 2006a]: 

2006] and the mac opic int

rotational coupling per unit mass )(τε rs,  [Simonenko, 2004; 2006]. Based on the established 
generalizations (1.13)  and  (3.148), we deduced (in 2005) the generalization [Simonenko

coup

                           
dt

)(τdε1)(τGrad :1dq1ds coup
rs,s −+−= vΠ                                  (3.150)  

TTTρdtTdt
extending the classical expression (deduced in accord nce with the classical Boltzmann’s  statistical 
approach identifying the entrop  h the molecular disorder) for the entropy production per unit time in the 
one-component macro-differential deformed continuum element with no chemical reactions [de Groot and 
Mazur, 1962]: 

                                                                 

dt
dε

T
1

dt
)(τdε1 r −

a
y wit

vΠ Grad :
Tρ
1

dt
dq

Tdt
−                                                     (3.151)  

1ds
=

acroscopic rotational (

and ) macroscopic non-equilibrium creative kinetic energies [Simonenko, 2004] of the sm

y, we revealed [ imonenko, 2006a] the creative constructive role of the established 
rgies  and  [

verified [Simonenko, 2006a] the validity of the Prigogine’s foresight that the Boltzmann’s “identification of 
lya Prigogine –   Autobiography

slation f

by taking into account the classical “reversible” m ) and “irreversible” ( )(τεs  
coup

)(τε r

)(τε rs,

macroscopic continuum region τ . Using the established generalized expression (3.150) for the entropy 
production, we demonstrated [Simonenko, 2006a] the temporal reduction of entropy at the initial stage of 
irreversible transition [Itsweire et al., 1986] of the freely decaying stratified turbulence to internal gravity 
waves. Thereb

all 

S
macroscopic non-equilibrium kinetic ene Simonenko, 2004]. Simultaneously, we   )(τεs )(τεcoup

rs,

entropy with molecular disorder could contain only one part of the truth” [I , 
Tran rom the French text, 1977]. The fundamental constructive role of the established macroscopic 
non-equilibrium kinetic energies )(τεs  and )(τεcoup

rs,  was  demonstrated [Simonenko, 2007] also by 
revealing the creative role of the cosmic non-stationary energy gravitational influences reducing the entropy 



of the  planet  )ττ( +  as a whole after the irreversible relaxation processes in the focal region τ  of 
earthquake. This demonstration is related with the established [Simonenko, 2007; 2007a; 2007b] 
generalization (presented in Subsection 1.7) of the Le Chatelier-Braun principle [Gibbs, 1928] for 
equilibrium rotating planet )ττ( + . 

The developed (in 2006) the generalized thermohydrogravidynamic shear-rotational model 
[Simonenko, 2007a; 2007b] explained [Simonenko, 2007; 2008; 2009; 2010] the significant increase of the 
energy flux cvis,cvis, δAδF ≡  of the geo-acoustic energy [Dolgikh et al., 2007] from the focal region before 
the prepared earthquake. The classical and generalized expressions ((3.151) and (3.150), respectively, for the 
entropy production) describe the positive (in accordance with the second law of thermodynamics) 
irreversible entr roduction for continuum characterized by the symmetric pressure te sor 

ΠδTP +=−= p  and the symmetric viscous-stress tensor Π . We obtained (in 2006) the explicit 
expression for the irreversible viscous-compressible entropy production σ  for the viscous compressible 
Newtonian continuum 

opy p n

vis,c

                               ( ) 0div
Tρ

)η/32η(
)(e

T
2ν

T
εGrad :

Tρ
1sdσ 2v2

ij
disi

vis,c >
dt

−
+==−== vvΠ .                         (3.152)  

The expression (3.152) can be rewritten (based on the established generalization (1.50) of the first law 
of thermodynamics for the symmetric tensor Π ) as follows 

                                  0
dt
dG

Tm
1d

Tm
1

dt
dK

Tm
1

dt
Aδ

Tm
1

dt
sdσ

τ

τ

τ

τ

τ

vis,c

τ

i
vis,c

π
>+−−==                           (3.153)  

 by taking into account the mass τm  of the continuum region τ  at the absolute temperature T,   the power 

δ)(1/mdt/δf τcvis, =

dt

cvis, the geo-acoustic energy radiated from the unit mass of the focal 

 to the non-stationary

macroscopic kinetic energy per unit mass , the total derivative π  of the 
s

bined (terrestrial and stationary energy gravitational influence on the 
ubjected to the non-stationary gravitational field.  

                                 

dt/A  of 

region τ  (subjected dt/)dK(1/m ττ  of the  gravitation), the total derivative  

ττk ττ

gravitational potential energy per unit ma s  ,m/ ττπ  and the total energy power per unit mass 
m/K)(τε = dt/)d(1/m

)dG/dt(1/mτ  of the com
continuum region τ  s

cosmic) non-

Based on the generalization (1.13) and the evaluation (3.153), we deduced (in 2006) the following 
condition 

0
t
ψ)ψ)(τε)(τε)(τε

2
(

dtdt
coup

 rs,sr
2
c >

∂
∂

−++++V                                          (3.154)  

for occurrence of a deep earthquakes  characte itive power dt/δf cvis, > acoustic 
energy radiated from the unit mass of the focal reg ccording to the condition (3.154), the criterion   

          

1dδfvis,c >

rized by the pos  of the geo-
ion  A

                       

0
 τ .

0
t
ψ))(τ(ε

dt
d

t
ψ)ψ)(τε)(τε)(τε

2
1(

dt
d

m
coup

 rs,sr
2
c >

∂
∂

−=
∂
∂

−++++V                         (3.155)  

is the “sine qua non” for occurrence of the earthquakes radiating the positive power per unit mass 

red as the local entropy prediction thermohydrog dynamic principle consistent with the 
al formulation (1.50) of the first law of thermodynami

the special relationship (for realization of a deep earthquakes) between the variations of the total derivative  

0dt/cvis, >  of the geo-acoustic energy from the focal region τ  of the Earth. The criterion (3.155)  may 
be conside
δf

ravi
generalized differenti cs. The criterion (3.155)  imposes 

))/dt(τd(εm  of the mechanical kinetic energy per unit mass  (τε)(τε km ψ) +=  and the local time derivative 
tψ/∂∂  of the potential ψ of the combined (terrestrial and cosmic)  non-stationary gravitational field.  

 
 

3.6. The cosmic energy gravitational genesis of the seismotectonic (and volcanic) activity and the 
g dlobal climate variability induced by the combine  non-stationary cosmic energy  

gr  Savitational influences on the Earth of the system un-Moon, the Venus,  the Mars, 
the Jupiter and the Sun owing to the gravitational interaction of the Sun with the Jupiter 

 
3.6.1. Empirical  time periodicities of the seismotectonic activity of the Earth 
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 o graphic It was pointed ut [Abramov, 1997; p. 72] that the sinusoidal “saw-like” form of the 
depen and lated with dence of growth recession of the seismotectonic activization of the separate geological structure is re
the following empirical time  periodicities: 

                                                                 11 years,                                                                         (3.156) 
                                                                 22 years,                                                                         (3.157) 

                   .158)                                                         44 years,                                                                         (3
                9)                                                            88 years,                                                                         (3.15
                0)                                                            352 years.                                                                       (3.16
                               (3.161)                                                  704 years,                                                                  
                               (3.162)                                                 1056 years.                                                                 
 It was pointed out [Vikulin, 2003; p. 16] that the strongest earthquakes in the all boundary region of 
the Pacific Ocean are characterized by the established tendency for recurrence on average once during the 
following time period [Fedotov, 1965; Davison, 1936; Christensen and Ruff 1986; Barrientos and Kansel, 
1990; Jacob, 1984; Shimazaki and Nakata, 1980; Suyehiro, 1984; Clark, Dibble, Fyfe, Lensen and Suggarte, 
1965; Johnston, 1965]:      

                                                     1505050100Tr ÷=±= years.                                               (3.163)  
It was pointed out [Vikulin, 2003; p. 16] also that the close values for recurrence of the strongest earthquakes 
were established for different seismic belts of the Earth:  14090 ÷ years for the Caucasus [Таmrazyan, 
1962] and 150 years for the Anatolian fault zone [Ambraseys, 1970]. We present the data of the monograph 
[Vikulin, 2003; p. 17] concerning to the recurrence of the strongest earthquakes in different regions of the of 
the seismic zone of the Pacific Ring [Vikulin, 1992; 1994; 2003]:  
                                                        130504090 ÷=± years – Kamchatka,                                          (3.164)  
                                                            1808050130 ÷=± years – Japan,                                            (3.165)  
                                                            1606050110 ÷=± years – Peru,                                            (3.166)  
                                                     100 1505050 ÷=± leutians.                                          (3.167)  years – A

It was pointed out [Vikulin, 2003; p. 17] that for the Japanese chute Nankay (stretched to the Tokyo) 
are revealed the characteristic time periodicities [Vikulin and Vikulina, 1989] of the strongest earthquakes: 
                                                                             600 years,                                                                    (3.168)  

                                                                  1200 years.                                                                   (3.169)  
It was revealed the empirical range of the time periodicities [Kyrillov, 1957]: 

                                                              300250 ÷ years.                                                             (3.170)  
for recurrence of the strongest earthqu

It was revealed the empirical ra icities [Turner, 1925]:  
akes in Turkey.  
nge of the time  period
            280240 ÷                                                    y

 earthquakes  in Chin
period

2) 

strong
seismi the E rth

ri
 the Mars, the Jupiter and 

the Su

ears                                                            (3.171) 
for recurrence of the strongest a. It was earlier revealed also the empirical time  

icity [Мэй Ши-юн, 1960] near: 
                                                                       1000 years                                                                (3.17

for recurrence of the strongest earthquakes in China.   
Based on the data presented in the monograph [Vikulin, 2003] concerning to the recurrence of the 

 valid conclusion that the est earthquakes in different regions of the Earth, Dr. A.V. Vikulin made the
  a . c processes have the global nature for In the next Subsection we present the explanation 

odicities by the different combinations of the cosmic [Simonenko, 2007] of the considered empirical time pe
energy gravitational influences on the Earth of the system Sun-Moon, the Venus,

n owing to the gravitational interaction of the Sun with the Jupiter 
 

 
3.6.2. The time periodicities of the maximal (instantaneous and integral)  

energy gravitational influences on the Earth of the system  
 Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing 

 to the gravitational interaction of the Sun with the Jupiter 
 

3.6.2.1. The time periodicities of the maximal (instantaneous and  integral)  
energy gravitational influences on the Earth of the system Sun-Moon 

  



118 
 

any time moment by the maximal 
com energy gravitational influence on the Earth, then the Sun and the Moon 
will have the recurrence of the same configuration after ifferent integer numbers of circulations  

circulations of the M n) to satisfy 
the following condition

                                                  (3.173) 

Following the kno ON by the 
following mathemati
                             

  
If the configuration of the Sun and the Moon is characterized at 

bined (instantaneous or integral) 
MOON,3(j   d

oon a  the Suround the Earth and MOONЗ,m   circulations of the Earth around
 [Simonenko, 2007]: 

                         MOON,3j  ТMOON  = MOONЗ,m   ТЗ.                          

wn method [Perelman, 1956], we presented [Simonenko, 2007] the ratio /TT MOЗ  
cal fraction:  

.

1204
4588

11

12

12

11
229530629.5306TMOON

+
+

+
+

+
1

11210932812365.3 TЗ

+

+=+==
                          (3.174)  

ation of 

                    =3 years,                                                    (3.175)  

                                                                  = 8 years,                                                  (3.176)  

                                                                 =  19 years,                                                (3.177)  

                                                                           =   27 years,                                               (3.178)  

                                                                =   235 years                                               (3.179)  
of recurrence of the maximal (instantaneous and integral) combined energy gravitational influences of the 
system  Sun-Moon on the Earth in the first, second, third, fourth and fifth approximations, respectively. We 
can ve

2ЗMOON,-S1ЗON,

Considering the different  approxim the ratio  , we obtained [Simonenko, 2007] the /TT MOONЗ

successive approximations for the time periodicities: 
                                              1ЗMOON,-S )(T

2ЗMOON,-S )(T

3ЗMOON,-S )(T

4ЗMOON,-S )(T

5ЗMOON,-S )(T

rify that the time periodicity  
                                                   11)(T)(T MO-S3ЗMOON,-S (T) =+= years                           (3.180)  
may b proximatio
and integral) energy stem  Sun-Moon on the Earth.  

e considered approximately as the third ap n of recurrence of the maximal (instantaneous 
 gravitational influences of the sy

 
 

3.6.2.2. The time periodicities of the maximal (instantaneous and integral)  
energy gravitational influences on the Earth of the Venus  

 
If the configuration of the Earth and th characterized at any time moment by the maximal e Venus is 

bers of circulations  circulations of the Venus around the Sun 

                         (3.181) 

Following the known method [Perelman, 1956], we presented [Simonenko, 2007] the ratio  by the 
following mathem

(instantaneous or integral) energy gravitational influence on the Earth, then the Earth and the Venus will 
have the recurrence of the same configuration (in the frame of the real elliptical orbits of the Earth and the 
Venus) after different integer num V,3k ( 
and VЗ,m   circulations of the Earth around the Sun) to satisfy the following condition [Simonenko, 2007]: 

                                                             V,3k  ТV  = VЗ,m  ТЗ.                                 

 /TT VЗ

atical fraction:  
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280
12

1
+

+
1

1+ 1
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11
2247
14061

224.7
365.3 

T
T

V

З

+
+=+==  .                                   (3.182)  

Considering the differe tained [Simonenko, 2007] the nt  approximation of the ratio we ob
successive approximations for the time  periodicities [Simonenko, 2007]: 

                                                                  

, /TT VЗ

 3)(T 1ЗV, = years,                                                          
(3.183)  

                                                                   8)(T 2ЗV, = years                                                          (3.184)  
of recurrence of the maximal (instantaneous and integral) energy gravitational influences of the Venus on the 
Earth in the first and second approximations, respectively. We can verify that the time periodicity  
                                                            11)(T)(T)(T 2ЗV,1ЗV,3ЗV, =+=  years                                          (3.185)  
may b  recurrence
energ the Earth.  

e considered as the third approximation of  of the maximal (instantaneous and integral) 
y gravitational influences of the Venus on 

  
 

3.6.2.3. The time periodicities of the maximal (instantaneous and integral) energy gravitational 
influences on the Earth of the Jupiter and the Sun owing 

 to the gravitational interaction of the Sun with the Jupiter 
 

 If the configuration of the Earth, the Jupiter and the Sun is characterized at any time moment by the 
maximal (instantaneous or integral) energy gravitational influences on the Earth, then the Earth, the Jupiter 
and the   Sun will have the recurrence of the same configuration (in the frame of the real elliptical orbits of the
Earth and the Jupiter) after f the Jupiter around  different integer numbers of circulations n (  circulations oJ,3

the Sun and  circul dition [Simonenko, JЗ,m   ations of the Earth around the Sun) to satisfy the following con
2 : 007]
                                                                             J,3n  ТJ   = JЗ,m  ТЗ.                                                                         (3.186) 

Following the known method [Perelman, 1956], we presented [Simonenko, 2007] the ratio ЗJ T/ T  by the 
following mathematical fraction:  

                                                                   
T
TJ

.

41

З

2412
6

+
+

1
11

11
365.3

 
+

+==                                       (3.187)  

ation of the ratio we obtained [  
riodicities [Simonenko, 2007]: 

                                                                                

14332

Considering the different approxim Simonenko, 2007] the 
successive approximations for the time  pe

,T/ T ЗJ

 11)(T 1ЗJ, = years                                                     (3.188)  

                                                                                 12)(T 2ЗJ, = years                                                     (3.189) 

                                                                      3ЗJ,  83)(T = years                                                     (3.190) 

ith the Jupiter) in the first, second 
of recurrence of the maximal (instantaneous and integral) energy gravitational influences on the Earth  of the 
Jupiter and the Sun (owing  to the gravitational interaction of the Sun w
and third approximations, respectively.  
 

3.6.2.4. The time periodicities of the maxim  energy gravitational al (instantaneous and integral)
influences on the Earth of the Mars 

 
If the configuration of the Earth and the Mars is characterized at any time moment by the maximal 
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tional influence on the Earth, then the Earth and the Mars will have 
e recurrence of the same configuration  (in the frame of the real elliptical orbits of the Earth and the Mars) 

after d  

and  circulations of the Earth around the Simonenko, 
2007]

  

(instantaneous or integral) energy gravita
th

ifferent integer numbers of circulations MARS,3(g   circulations of the Mars around the Sun

Sun) to satisfy the following condition [MARSЗ,m  
: 
                                                          MARS,3g  ТMARS = MARSЗ,m  ТЗ.                                              (3.191)  
Following the known method [Perelman, 1956], we presented [Simonenko, 2007] the ratio  

 /TT  by the following mathematical fraction:
                                                   

ЗMARS

59
471

11

12
7

+

1
З

11
1

3653
1

365.3
 

T
MARS

+
+

+
+

+=+==

Considering the different approximation of the ratio we obtained [Simonenko, 2007] the  
successive approximations for the time  periodicities [Simonenko, 2007]: 

                                                        

13217687.0T  .                          (3.192)  

, /TT ЗMARS

 15)(T 1ЗMARS, = years,                                                           (3.193)  

                                                        32)(T 2ЗMARS, = years,                                                           (3.194) 

                                                         47)(T 3ЗMARS, = years,                                                           (3.195) 
of recurrence of the maximal (instantaneous or integral) energy gravitational influences of the Mars on the 
Earth in the first, second and third approximations, respectively. 
 
 

3.6.2.5. The time periodicities of the periodic global seismotectonic (and volcanic)  
activity and the global climate variability of the Earth induced by the 
 combined different combinations  of the cosmic  energy gravitational  

influences of the system  Sun-Moon, the Venus, the Mars, the Jupiter and  
the Sun owing  to the gravitational interaction of the Sun with the Jupiter 

 
 We hav iodicity 

) of the max  
combination of th e Mars and 
the Jupiter) leads arth) to the 
period c recurren e same time 

period

e shown [Simonenko, 2007] that the periodic recurrence (characterized by the time per
energyT imal integral energy gravitational influences on the Earth (defined by the planetary

e th
 (according to the generalized differential formulation (1.43) applied for the E

system  Sun-Moon and the arbitrary combination of the planets: the Venus, 

ce of the maximal seismotectonic (and volcanic) activity (characterized by thi
periodicity energytec TT = ) of the geo-spheres of the Earth. We have shown [Simonenko, 2007] that the 

ic recurrence (characterized by the time periodicity energyT ) of the maximal integral energy 
gravitational influences on the Earth (defined by the combination of the system  Sun-Moon and the arbitrary 
combination of the planets: the Venus, the Mars and the Jupiter, and the Sun owing  to the gravitational 
interaction of the Sun with the Jupiter) leads (according to the  generalized differential formulation (1.43) 
applied for each geo-block of Earth) to the periodic recurrence of the maximal seismotectonic (and volcanic) 
activity (characterized by the same time periodicity enetec TT rgy= ) of each geo-block of Earth. We have 

shown [Simonenko, 2007] that the periodic recurrence (characterized by the time periodicity energytec TT = ) 
of the maximal seismotectonic (and volcanic) activity of the geo-spheres of the Earth and each geo-block of 
the Earth (defined by the combination of the system  Sun-Moon and the arbitrary combinations of the 
planets: the Venus, the Mars, the Jupiter, and the Sun owing  to the gravitational interaction of the Sun with 
the Jupiter) leads to the periodic recurrence (characte  time periodicity energytec TT = )  of the 
maximal concentration of the atmospheric greenhouse gases owing to the periodic increase (cha  
the time periodicity energytec TT

rized by the
racterized by

= )  of the output of the greenhouse gases related with the periodic 
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seismotectonic-volcanic activization of the Earth. We have shown [Simonenko, 2007] that the periodic 
increase (characterized by the time periodicity energytec TT = ) of the  average planetary concentration of the 
atmospheric greenhouse gases leads (as a consequence of the greenhouse effect prod  gravity-
induced periodic tectonic-volcanic activization accompanied by the increase of the atmospheric greenhouse 
gases) to the periodic global planetary warming related with the increase (characterized by the time 
periodicity energytec TT = ) of temperature of the system atmosphere-oceans of the Earth. We have shown 

[Simonenko, 2007] that the periodic decrease (characterized by the time periodicity energytec TT = ) of the 
average planetary concentration of the atmospheric greenhouse gases leads (as a consequence of the 
decreased greenhouse effect) to the periodic global planetary cooling related with the fall (characterized by 
the time periodicity energytec TT = ) of temperature of the atmosphere-oceans system of the Earth. We have 

shown [Sim ] that the time periodicity energyT  of the periodic recurrence of the maximal integral 
energy gravitational influences on the Earth (defined by the combination of the system  and the 
arbitrary combinations of the planets: the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational 
interaction of the Sun with the Jupiter) corresponds to the following (two) global time periodicities of the 
Earth’s climate variab enko, 2007]: the first time periodicity energytecclim1 TT T =

uced by the

onenko, 2007
  Sun-Moon

ility [Simon =  (related with 
the periodic seismotectonic-volcanic activity of the geo- heres of the Earth and each geo-block of the Earth 
induced by the cosmic non-stationary combined energy gravitational influences on the Earth of the system  
Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun 
with the Jupiter) and the second time periodicity 2/TTT energyendogclim2

sp

==  related with the periodic 
volcanic activity determined by the periodic tectonic-endogenous heating (of the geo-spheres of the Earth, 
each geo-block of the Earth, and the atmosphere and the oceans of the Earth) induced by the periodic 
continuum deformation (characterized by the time periodicity energyT ) owing to the periodic cosmic non-

stationary combined energy gravitational influences (characterized by the time periodicity energyT ) on the 
Earth of the system  Sun-Moon, the Venus, the Mars owing  to the gravitational 
interaction of the Sun with the Jupiter. 

Based on the equivalent generalized differential formulations (1.43), (1.50) and  (1.53) [Simonenko, 
2007] of the first law of thermodynamics for the Earth and using the obtained successive approximations for 
the time periodicities of the periodic recurrence of the maxim
gravitational influences on the Earth of the system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun 
owing  to the gravitational interaction of the Sun with the Jupiter, we founded   [Simonenko, 2007; 2009; 
2010] the sets of the global seismotect

, the Jupiter and the Sun 

al (instantaneous and integral) energy 

onic and volcanic periodicities  (of the periodic global gravity-
induce

2l

 the 

 tecT
d seismotectonic and volcanic activities and the cosmic geological cycles of the 

thermohydrogravidynamic evolution of the Earth owing to the main cosmic G -factor related to the 
differential dG of the combined cosmic non-stationary energy gravitational influences on the Earth of the 
system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the 
Sun with the Jupiter)  and the global climatic periodicities clim1T  (of the periodic global gravity-induced 
climate variability and the global variability of the quantities of the fresh water and glacial ice resources 
owing to the )G(b -factor related to the periodic atmospheric-oceanic  warming or cooling as a consequence 
of the periodic variable (increasing or decreasing) output of the heated greenhouse volcanic gases and the 
related variable greenhouse effect induced by the periodic variable tectonic-volcanic activity (activization or 
weakening) due to the G -factor):  
                                     ,)(T)(T(T)(TTTT 54o

nЗJ,kЗMARS,jЗV,iЗMOON,-Senergyclim1tec
lll ×××===                     (3.196) 

determined by successive global periodicities energyT  (defined by the multiplications of various successive 
time periodicities related to the different combinations of the following integer numbers: 4,5; 3, 2, 1,i =  

2; 1,j =   3; 2, 1,k =  3; 2, 1,n =   1;,0o =l   1;,02

)

=l   1;,04 =l  1,05 =l ) of recurrence of the maximal 
combined energy gravi ional influtat ences on the Earth of ined comb

ravitational influences on the Earth of the system Sun-Moon, t

activity) 

 the different comb inations of the cosmic 
non-stationary energy g he Venus, the Mars, 
the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter. The global 
seismotectonic and volcanic periodicities tecT  (of the global periodic seismotectonic and volcanic 



122 
 

and the global climatic periodicities (of the global periodic climate 

ics 

clim1T  variability) are related with the 
periodic recurrence of the maximal combined integral energy gravitational influences on the Earth induced 
by the different combinations of the cosmic non-stationary energy gravitational influences of the system  
Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun 
with the Jupiter.  

Using the equivalent generalized differential formulations (1.43), (1.50) and  (1.53) [Simonenko, 
2007] of the first law of thermodynam for the Earth and the obtained successive approximations for the 
time periodicities of the periodic recurrence of the maximal (instantaneous and integral) energy gravitational 
influences on the Earth of the system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the 
gravitational interaction of the Sun with the Jupiter, we founded   [Simonenko, 2007; 2009; 2010] the set of 
the global volcanic and climatic periodicities 2/TTT energyendogclim2 ==   (of the periodic global tectonic-
endogenous heating determining the periodic global volcanic activity and the related global climate 
variability and the global variability of the quantities of the fresh water and glacial ice resources and the 
cosmic geological cycles of the thermohydrogravidynamic evolution of the Earth owing to the )G(a -factor 

related to the tectonic-endogenous heating  contributing to the differential increase 
3τ

dU  of the internal 

thermal energy 
3τ

U  of the Earth 3τ  as a consequence of the periodic continuum deformation of the Earth 

3τ  due to the G -factor):  
                         ,2/)(T)(T)(T)(T2/TT 542o

nЗJ,kЗMARS,jЗV,iЗMOON,-Senergyclim2
llll ×××==                                 (3.197)  

determined by the successive global periodicities energyT  (defined by the multiplications of various successive 
time periodicitie lated to the di erent combinations of the following integer numbers: 4,5; 3, 2, 1,i =  

2; 1,   3; 2, 1,k =  n =
s re ff

 j = 3; 2, 1,  1;,0o =l   1;,02 =l   1;,04 =l  1,05 =l ) of recurrence of the m
 gravitational influences on the Earth of the different combined

nergy gravitational influences on the Earth of the system Sun-M
intera

aximal 
combined energ  combinations of the cosmic 
non-stationary e oon, the Venus, the Mars, 

y

the Jupiter and the Sun owing  to the gravitational ction of the Sun with the Jupiter. The global volcanic 
and climatic periodicities 2/TTT energyendogclim2 ==  (of the global periodic volcanic 

the m ed integral energy gravitational 
influences on the Earth induced by the different combinations of the cosmic non-stationary energy 
gravitational influences of the  system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the 
gravitational interaction of the Sun with the Jupiter.  

and  climatic 
variability) are related with the periodic recurrence of aximal combin

 By comparing the global seismotectonic, volcanic and climatic time periodicities (obtained from the 
expression (3.196)) with the e s of the seismotectonic activity of the Earth submitted mpirical time periodicitie
in Subsection 3.6.1 we established [Simonenko, 2007] that the empirical time periodicities (of the 
seismotectonic activity of the Earth) may be satisfactory approximated by the expression (3.196) with the 
different combinations of the various integer numbers. 
 The calculated time periodicity 24 years (given × by 3 8 years determined by the combination of the 
sy   Sun-Moon and the Venus) is close to empirical time periodicity 22 years given by (3.157).  stem
 The calculated time periodicity 45 years (given by 3 × 15 years determined by the combination of the 
system  Sun-Moon, the Venus and the Mars) is close to the empirical time periodicity 44 years given by 
(3.158).  
 The empirical time periodicity 88 years (given by (3.159)) is equal to the same time periodicity  88 
y (given by 8  × 11 years determined by the combination of the system  Sun-Moon, the Venus, the Jupiter ears 
and the Sun owing  to the gravitational interaction of the Sun with the Jupiter). Since the ratio 88 years/ 
ТMARS=46.786 in close to 47, we concluded [Simonenko, 2 09; 2010] that the time periodicity 88 years is 0
determined also by the Mars.   
 The ÷ 96 years (given by  8 (11 12) years  ×  ÷ calculated range of the time periodicities 88
determined by the planetary combination of the system  Sun-Moon, the Venus, the Jupiter and the Sun 
owing  to the gravitational interaction of the Sun with the Jupiter) gets into the ranges of the empirical time 
periodicities: the range 50100Tr ±= years (given by (3.163)), the range  4090 ± years (given by (3.164)), 
the range 50130 ± years (given by (3.165)), the range 50110±  years (given by (3.166)) and the range 

5010  years (given by (3.167)).  
The calculated time periodicity 96 years (given by 3

0 ±
× 32 years determined by the combination of the 

system  Sun-Moon, the Venus and the Mars) gets into the ranges of the empirical time periodicities: the 
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rs (given byrange 50100Tr ±= yea  (3.163)), the range  4090 ± years (given by (3.164)), the range 
50130 ± y en by (3.165)), the range 50110±  y en by (3.166)) and the range 50100ears (givears (giv ±  

en by (3.167)). years (giv
The calculated range of the time periodicities 99÷ 108 years (given by  3  × 3  × (11  ÷ 12) years 

determined by the combination of the system  Sun-Moon, the  Venus, the Jupiter and the Sun owing  to the 
gravitational interaction of the Sun with the Jupiter) gets into the ranges of the empirical time periodicities: 

  50100Tr ±= years (given by (3.163)), the range  4090the range ± years (given by (3.164)), the range 
50130 ± years (giv 50110±  years (given by (3.166)) and the range 50100 ±  en by (3.165)), the range 

years (given by (3.167)). 
 The calculated range of the time periodicity 120 years (given by 8× 15 years determined by the 
combination of the system  Sun-Moon, Venus and the Mars) gets into the ranges of the empirical time 
periodicities 50100Tr ±= years (given by (3.163)), the range  4090: the range ± years (given by (3.164)), 
the range 50130 ± years (given by (3.165)), the range 50110±  years (given by (3.166)) and the range 

50100 ±  years (given by (3.167)).  
 The calculated time periodicity 135 years (given by 3× 3× 15 years determined by the combination 
of the system  Sun-Moon, the Venus and the Mars) gets into the range of the empirical time periodicities 

50100Tr ±= years (give .  
The calculated time periodicity 152 years (given by 19

n by (3.163))
 152 = × 8 determined by the combination of 

m Sun-Moon and the Venuthe syste s) gets into the ranges of the empirical time periodicities:  the range 
501 years (given by (3.165)) and the range 5011030± ± years  (given by (3.166)).  

 The calculated range 165  ÷ 180 years (given by 15× (11 ÷ 12) years determined by the combination 
of the system ter and the Sun gravitational interaction of the Sun with  Sun-Moon, the Mars, Jupi owing to the 
the Jupiter) gets into the range of the empirical time periodicities 0130 5±  years (given by (3.165)). 

The calculated time periodicity 249 years (given by 249 = 3× 83 years determined by the combination 
stem Sun-Moon, the Venus, the Jupiter of the sy and the Sun owing to the gravitational interaction of the Sun 

ith t  w he Jupiter) is near the lower value of the range of the e irical time periodicities 300250÷ years 
(given by (3.170)) and gets into the range 280240

mp
÷ years of the empirical time periodicities (given by 

(3.171)).  
The calculated time periodicity 285 years (given by 19× 15 years determined by the combination of 

the system Sun-Moon and the Mars) is close to the upper value of the range  280240÷  years of the 
empirical time periodicities (given by (3.171)). 

The calculated time periodicity 285 years (given by 19× 15 years determined by the combination of 
the system Sun-Moon and the Mars) gets into the range of the empirical time periodicities ears 
(given

300250÷ y
 by (3.170)).  

 The calculated range of the time periodicities 264÷ 288 years (given by  3   ÷ 12) years  × 8  × (11
determined by the combination of the system  Sun-Moon, Venus, the Jupiter and the Sun owing to the the 
gravitational interaction of the Sun with the Jupiter) gets approximately into the range of the empirical time  
periodicities 280240÷ years (given by (3.171)).  

The calculated time periodicity 352 years (given by   32× 11 years determined by the combination of 
th   Sun-Moon, the Mars, the Jupiter and the Sun owing to the gravitational interaction of the Sun 
with the Jupiter) is equal to the empirical time periodicity 352 years (given by (3.160)).  

e system

         The empirical time periodicities 704 years [Abramov, 1997]  (given by (3.161)), 1056 years [Abramov, 
1997] (give 3.162)), 600 years [Vikulin and Vikulina, 1989] (given by  (3.168)), n by (                    
1200 years [Vikulin and Vikulina, 1989] (given by (3.169)) and                    
1000 years [Мэй Ши-юн, 1960]  (given by  (3.172)) were also well approximated [Simonenko, 2007; 2008; 
2009; 2010] by the different combinations of the system  Sun-Moon, the Venus, the Jupiter and the Sun 
owing to the gravitational interaction of the Sun with the Jupiter. 

Finally, the established [Sim enko, 2007] global seismotectonic, volcanic and climatic periodicity of 
4320 years (given by 121583 ×

on
××  years determined by the recurrence of the maximal combined energy 

gravitational influences on the Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun 
owing to the gravitational interaction of the Sun with the Jupiter) represents the fundamental basis of Hindu 
cosmological time cycles.   
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e earthquakes.  
o confirm the proposed cosmic energy gravitational genesis of the strongest (M 7.9) Japanese 

arthquakes, we present in Table 1 the time periods  (given in years) of  recurrence of the strongest 
Japanese ea esponding 

me periodicities (given in years) induced by the given (in Table 1) corresponding planetary combinations.  

3.6.3. Cosmic energy gravitational genesis of the strongest Japanese earthquakes 
 

We demonstrated [Simonenko, 2007; 2009; 2010] the cosmic energy gravitational genesis of the 
strongest (M ≥ 7.9) Japanes

≥ T
 T1e

rthquakes [Vikulin, 2003; p. 17] and the obtained [Simonenko, 2007; 2009; 2010] corr
ti

Taking into account the time periodicity 83 years (given by (3.190)), the year 1927 AD of the Jupiter’s 
opposition  with the Earth, the time periodicity 8 8  years 11 8×=  years (given by (3.159) and determined 

 system  Sun-Moon, the Venus, the Jupiter, the Mars and the Sun owing to the gravitational interaction 
of the Sun with the Jupiter) and the year 1923 AD of the strongest Japanese earthquake in the Tokyo region, 
we predicted [Simonenko, 2009; 2010] “the time range 2010

by the

÷ 2011 AD (1927+83  ÷ 1923+88) of the next 
sufficiently strong Japanese earthquake near the Tokyo region”. 

 
 
                                                                                                                                                Table 1 

The time periods  T1 (given in years) of  recurrence of the strongest Japanese earthquakes [Vikulin, 2003; p. 
17] and the obtained [Simonenko, 2007; 2009; 2010] corresponding time periodicities (given in years) 
induced by the following planetary combinations  
 
Region 
 

Magnitude M of 

se

Date of the The time periods        

quakes 

Corresponding time periodicities  
the strongest  strongest  T (given in years) of (given in years) determined by the 
Japane  
earthquakes 

Japanese 
earthquake 
 

1

recurrence of the 
strongest  Japanese 
earth

following planetary combination       

7.9 1.01.1605   
 

)1211( 89688 ÷×=÷ –Sun-Moon-
Venus-Jupiter- Sun (due to Jupiter) –
Mars 

8.2 31.12.1703               98 

32 396 ×=   – Sun-Moon-Venus-
ars M

 
 
 
Tokyo 
region 

 
 8.2 1.09.1923              220 )1211(19228209 ÷×=÷  – Sun-

Moon-Jupiter- Sun (due to Jupiter) 
8.6 20.09.1498   

32 396 ×=   – Sun-Moon-Venus-
Mars 

7.9 31.01.1605 107 
 

15 8120 ×= – Sun-Moon-Venus-
Mars 

32 396 ×=   – Sun-Moon-Venus-
Mars 

8.4 28.10.1707 102 
 

15 8120 ×= – Sun-Moon-Venus-
Mars 

8.4 23.12.1854 147 8 19152 ×=  – Sun-Moon-Venus 

 
 
 
 
South-
west 

om 
okyo 

 

fr
T

8.0 7.12.1944 90 
 

)1211( 8988 6 ÷×=÷ – Sun-Moon-
Venus er- Sun (due to Jupiter)-Jupit  

 
 
The occurrence of the strong Japanese earthquake on 11 2011 confirmed the proposed [Simonenko, March, 
2007; Simonenko, 2009; 2010] y gravitatio enesis of the strongest Jcosmic energ nal g apanese earthquakes. 
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3.6.4. The evaluated mean time  periodicities 94620 years and 107568  years of the global climate 
variability (related with the factor and factor determined by the cosmic  

non-stationary energy gravitational influences on the Earth of the system  Sun-Moon, the Venus, 
the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter)  

and the mean time periodicities 100845 years and 121612.5 years of the global climate variability 
r

[H d 
1220 ]  is 
related with the t atic variability 
during P rs 
24000 years.  

ce the variations of the radiation (related with the variations of the eccentricity of 
the Ea

 the minim

-)G(a -)G(b

elated with the -)G(b factor (determined by the cosmic non-stationary energy gravitational 
influences on the Earth of the system  Sun-Moon, the Venus, the Mars, 

 the Jupiter and the Sun owin the gravitati nteraction of the Sun with the Jupg  to onal i iter) 
 

It is well known [Bol’shakov, 2003; p. 82] that 50% of the climatic variability during Pleistocene 
ays, Imbrie and Shackleton, 1976] is related with the time periodicities 106000 years, 94000 years an

00 years; 25% of the climatic variability during Pleistocene [Hays, Imbrie and Shackleton, 1976
ime periodicities 40000 years, 41000 years and 43000 years;  10% of the clim

leistocene [Hays, Imbrie and Shackleton, 1976] is related with the time periodicities 23000 yea

Based on the generalized differential formulation (1.43) of the first law of thermodynamics applied for 
the Earth, we developed the fundamentals of the thermohydrogravidynamic theory of the paleoclimate 
[Simonenko, 2007] of the Earth and proposed [Simonenko, 2007]  the partial solution of the problem of the 
100000-year climate periodicity [Berger, 1999] during Pleistocene by taking into account the -)G(a factor 
and -)G(b factor determined by the cosmic non-stationary energy gravitational influences on the Earth of 
the system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of 
the Sun with the Jupiter. 

It was noted [Bol’shakov, 2003; p. 82] that the spectrum [Hays et al., 1976] of the variations of the 
summer insolation on 060 northern latitude of the Earth during last 468000 years (calculated based on the 
Milankovitch theory [Milankovitch, 1938]) does not contain the main time periodicity 100000 years of the 
climatic variability during the last 1000000 years. It was concluded [Imbrie et al., 1993; p. 730] that the 
foundation of the 100000-year climate periodicity is not possible in the frame of the Milankovitch theory 
[Milankovitch, 1938] sin

rth’s orbit) are very small to control adequately the change of the Earth’s climate.  
According to the estimation [Bol’shakov, 2003; p. 28] based on the numerical data [Berger and Loutre, 

1991] of the variation of the eccentricity e of the Earth’s orbit during the last 2000000 years and the 
Milankovitch dependence  )e-(1 5.02 − [Milankovitch, 1938] of the average (annual) solar energy flux related 
with the eccentricity  e of the Earth’s orbit, the variations of the average (annual) solar energy flux are not 
exceeded 0.16%. It was also concluded [Bol’shakov, 2003; p. 100] that the Milankovitch theory 
[Milankovitch, 1938] cannot predict the climate variability related with the 100000-year periodicity. It was 
presented [Bol’shakov, 2003; p. 100-101] the explicit contradiction of the Milankovitch theory 
[Milankovitch, 1938]: the glacial epochs (according the empirical data [Hays et al., 1976]) during the last 
500000 years correspond to al values of the eccentricity of the Earth’s orbit [Bol’shakov, 2003; p. 
100], but the Milankovitch theory (in which the glacial epochs are associated with the minimal values of the 
solar radiation related with the minimal values of the eccentricity of the Earth’s orbit) predict four (from 
five) glacial epochs during the last 750000 years  [Bol’shakov, 2003; p. 100, Fig. 23] corresponding to the 
maximal values of the eccentricity of the Earth’s orbit taken from the work [Berger, 1988, Fig. 9]. It was 
concluded [Bol’shakov, 2003; p. 114] that the genesis of the 100000-year climate periodicity is not 
explained. The analogous conclusion was made [Berger, 1999, p. 312; Elkibbi and Rial, 2001]. Thus, we see 
that the solution of the problem of the 100000-year climate periodicity during Pleistocene [Berger, 1999; 
Bol’shakov, 2003; p. 100] cannot be obtain in the frame of the Milankovitch theory [Milankovitch, 1938]. 

We founded the near 100000 years Earth’s climate periodicities in the frame of the 
thermohydrogravidynamic theory  [Simonenko, 2007] using the conclusion that for the time periodicity 

energyT  of the periodic recurrence of the maximal integral energy gravitational influences on the Earth 
(defined by the combination of the system  Sun-Moon and the arbitrary combination of the Venus, the Mars, 
the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter) we have two global 
time periodicities of the Earth’s climate variability: the time periodicity energytec TT =  (related with the 
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by the

Sun owing  to the 
gravit

periodic tectonic-volcanic activity of the geo-spheres of the Earth and each geo-block of the Earth induced 
 cosmic non-stationary combined energy gravitational influence on the Earth of the system  Sun-Moon, 

the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the 
Jupiter) and time periodicity 2/TT energyendog =  related with the periodic tectonic-endogenous heating (of the 
geo-spheres of the Earth, each geo-block of the Earth, the atmosphere and the oceans of the Earth) and 
related global volcanic activity induced by the periodic continuum deformation (characterized by the time 
periodicity energyT ) owing to the periodic cosmic non-stationary combined energy gravitational influence 

(characterized by the time periodicity energyT ) on the Earth of the system  Sun-Moon, the Venus, the Mars, 
the Jupiter and the Sun owing al interaction of the Sun with the Jupiter. 

Considering the time periodicity 19 years of the maximal combined integral energy gravitational 
influence on the Earth of the system  Sun-Moon (in the third approximation), the time periodicity  8 years  of 
the maximal al energy gravitational influence on the Earth of the Venus (in the second approximation),   
the time periodicity  15 years  of the m al integral energy gravitational influence on the Earth of  the 
Mars (in the first approximation) and the time periodicity  83 years of the maximal integral energy 
gravitational influence on the Earth of  the Jupiter (in the third approximation) and the 

  to the gravitation

 integr
axim

ational interaction of the Sun with the Jupiter,  we obtained [Simonenko, 2007] the time periodicity  
                      2/TTT energyendogclim2 == = 0.5× 19× 8× 15× 83 years = 94620 years                        (3.198)  
of the global climate variability of the Earth related with the periodic tectonic-endogenous heating (of the 
geo-spheres of the Earth, each geo-block of the Earth, the atmosphere and the oceans of the Earth) and 
related global volcanic activity induced by periodic continuum deformation (characterized by the time 
periodicity energyT ) owing to the periodic cosmic non-stationary combined energy gravitational influences 

(characterized energy ) on the Earth of the system  Sun-Moon, the Venus, the Mars, by the time periodicity T

 integ

d the
 Sun owing  to the 

gravit

 
the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter. 

Considering the time periodicity 27 years of the maximal combined integral energy gravitational 
influence on the Earth of the system  Sun-Moon (in the fourth approximation), the time periodicity 3 years of 
the maximal ral energy gravitational influences on the Earth of the Venus (in the first approximation), 
the time periodicity 15 years  of the maximal integral energy gravitational influences on the Earth of the 
Mars (in the first approximation) an  time periodicity 83 years of the maximal integral energy 
gravitational influences on the Earth of  the Jupiter (in the third approximation) and the

ational interaction of the Sun with the Jupiter, we obtained [Simonenko, 2007] the time periodicity  
                         energyclim1tec TTT ==  = 27× 3× 15× 83 years = 100845 years                          (3.199)  

of the Earth’s periodic seismotectonic (and volcanic)  activity and the global climate variability of the Earth 
induced by the combined cosmic non-stationary energy gravitational influences on the Earth of the system  
Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun 
with the Jupiter. 

Considering the time periodicity 27 years of the maximal combined integral energy gravitational 
influence on the Earth of the system  Sun-Moon  (in t o

Earth of the Jupiter (in the third approximation) and the Sun owing  to the gravitational 
interac

he f urth approximation),  the periodicity 3 years  of 
the maximal integral energy gravitational influence on the Earth of the Venus (in the first approximation), 
the periodicity 32 years of the maximal integral energy gravitational influence on the Earth of the Mars (in 
the second  approximation) and the periodicity 83 years of the maximal integral energy gravitational 
influence on the 

tion of the Sun with the Jupiter, we obtained [Simonenko, 2007] the time periodicity  
                        2/TTT energyendogclim2 == = 0.5× 27× 3× 32× 83years  = 107568 years                    (3.200)  
of the global climate variability of the Earth related with the periodic tectonic-endogenous heating (of the 
geo-spheres of the Earth, each geo-block of the Earth, the atmosphere and the oceans of the Earth) and 
related global volcanic activity induced by periodic continuum deformation (characterized by the time 
periodicity energyT ) owing to the periodic cosmic non-stationary combined energy gravitational influences 

(characterized b ergy ) on the Earth of the system  Sun-Moon, the Venus, the Mars, y the time periodicity T

 integ

 en

the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter. 
Considering the time periodicity 235 years of the maximal combined integral energy gravitational 

influence on the Earth of the system  Sun-Moon (in the fifth approximation), the time periodicity 3 years   of 
the maximal ral energy gravitational influences on the Earth of the Venus (in the first approximation), 
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aximthe time periodicity 15 years of the m al integral energy gravitational influences on the Earth of the  
Mars (in first approximation) and the range of the time periodicities  (11 ÷ 12) years of th
energy

e maximal integral 
 gravitational influences on the Earth of the Jupiter (in the first and second approximations) and the 

Sun owing  to the gravitational interaction of the Sun with the Jupiter, we obtained [Simonenko, 2007] the 
range of the time periodicities   

        energyclim1tec TTT ==  = 235  × 3× 15× (11 ÷ 12) years  = 116325÷ 126900 years           (3.201)  
of the global periodic seismotectonic (and volcanic) activity and the global climate variability of the Earth 
induced by the combined integral cosmic non-stationary energy gravitational influences on the Earth of the 
system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the 
Sun with the Jupiter. The average value 121612.5 years (of the calculated range 116325 126900 years of 
the tim iodicities given by (  i e

 ÷
e per 3.201)) s v ry close to the empirical time periodicity 122000 years [Hays, 

Imbrie and Shackleton, 1976] of the climatic variability during Pleistocene. The value 124000 years 
(corresponding to the strong local maximum of the amplitude-frequency spectrum [Berger and Loutre, 1991] 
of the variations of the eccentricity of the Earth’s orbit during the last 2 millions years) gets into the 
predicted theoretical range (3.201) of the time periodicities 116325÷ 126900 years [Simonenko, 2007].  

 
                                                                                                                                                      Table 2 
The empirical time periodicities (related with the problem of the 100000-year climate periodicity during 
Pleistocene [Berger, 1999]) and the founded time periodicities established in the frame of the 
thermohydrogravidynamic theory [Simonenko, 2007a; 2007; 2008] f the Earth’s paleoclimate 
 

o

e and The empirical [Hays, Imbrie and [Muller and [Hays, Imbrie and    [Hays, Imbri
time periodicities 
of the Earth’s 
climatic 
variability 

Shack-leton, 1976]:   
      
      
   94000 years    

MacDonald,1995]: 
   
   
   100000 years        

Shack-leton, 
1976]:      
       
  

Shack-leton, 1976]:    
    
  122000 years 

     106000 years 

The founded time 
periodicities of 
the Earth’s global 
climate var
stablished 

iability 
 in the     periodicity e

frame of  
thermohy-
drogravidynamic 
 theory 
[Simonenko, 
2007] 
 

[Simonenko, 2007; 
48]: p. 1

 
 
 
    94620 years  

   [Simonenko,   
2007; p. 148]:    

  
 
    
   100845 years  

  [Simonenko,   
2007; p. 148]: 
    
 
 
 107568 years  

     [Simonenko,   
 2007; p. 148]:     

  
     average      

 121612.5 years  

The established  
l genesisphysica

of the 
periodicities 
he Ear

 
time 

of 
th’s global 

 
t
climate variability
revealed in the 
frame of the 
thermohydrogra-
vidynamic theory 
[Simonenko, 
2007] 
of the Earth’s 
paleoclimate 
 
 

The global periodic 
Earth’s tectonic-
endogenous 
heating related with 
the 
periodic continuum 
deformation (and 
related global 
volcanic activity) 
induced by the 
 combined cosmic 
  non-stationary 
energy 
gravitational 
influence on the 
Earth of the system  
Sun-Moon, the 
Venus, the Mars, 

The global periodic 
Earth’s 
atmospheric-
oceanic warming as 
a consequence of 
the greenhouse 
effect produced by 
the gravity-induced 
(owing to the 
combined cosmic 
non-stationary 
energy 
gravitational 
influence on the 
Earth of the system  
Sun-Moon, the 
Venus, the Mars, 
the Jupiter and the 

The global 
periodic Earth’s 
tectonic 
endogenous 
heating related 
with the 
periodic 
continuum 
deformation (and 
related global 
volcanic activity) 
induced by the 
combined cosmic 
 non-stationary 
energy 
gravitational 
influence on the 
Earth of the 

The global periodic  
Earth’s 
atmospheric-
oceanic warming as 
a consequence of 
the greenhouse 
effect produced by 
the gravity-induced  
(owing to the 
combined cosmic 
non-stationary  
energy gravitational 
influence on the 
Earth of the system  
Sun-Moon, the 
Venus, the Mars, the 
Jupiter and the Sun 
owing  to the 
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the Jupiter and the 
Sun owing  to the 
gravitational 
interaction of the 
Sun with the 
Jupiter 
 

Sun owing  to the 
gravitational 
interaction of the 
Sun with the 
Jupiter) periodic 
global tectonic-
volcanic 
activization 
accompanied by 
increased output  of 
the atmospheric 
greenhouse gases  
 

system  Sun-
Moon, the Venus, 
the Mars, the 
Jupiter and the 
Sun owing  to the 
gravitational 
interaction of the 
Sun with the 
Jupiter 
 
 

gravitational 
interaction of the 
Sun with the 
Jupiter) 
 periodic global 
tectonic-volcanic 
activization 
accompanied by 
increased output of 
the atmospheric 
greenhouse gases  
 

 
 
The recurrence of the maximal tecton  of the Earth (char

of the time periodicities 116325 26900 currence of the m n 
of the atmospheric greenhouse gases chara e time periodicities 116325 126900 years) 
owing to the periodic increase of production of the atmospheric greenhouse gases related with tectonic-
volcanic activization of the Earth. The periodic increase of the atmospheric greenhouse concentration 
(characterized by the range of the time periodicities 116325

ic (and volcanic) activ
years) must lead to the re
cterized by the sam

ity acterized by the range 
aximal concentratio ÷ 1  

 ÷

gases 
÷ 126900 years) must lead to the periodic 

climate variability related with the atmospheric-oceanic warming as a consequence of the greenhouse effect.  
The established [Simonenko, 2007] cosmic energy gravitational genesis of the range (3.201) of the 

time periodicities 116325÷ 126900 years (corresponding to the empirical time periodici  122000 years 
[Hays, Imbrie and Shackleton, 1976] of the global climate variability) is explained in the frame of the 
thermohydrogravidynamic theory [Simonenko, 2007]  by considering the combined energy gravitational 
influence on the Earth of the system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the 
gravitational interaction of the Sun with the Jupiter. 

ty

imonenko, 2007] time periodicity 94620 years 
(0.5

imonenko, 2007] the cosmic energy gravitational 
genes

of the system  Sun-
Moon

y 100000 years of the variability of the carbon concentration in the Earth’s sedimentary rocks. The 
empir

n ith

We present in Table 2 the empirical time periodicities [Muller and MacDonald, 1995; Hays, Imbrie 
and Shackleton, 1976] of the Earth’s global climatic variability (related with the problem of the 100000-year 
climate periodicity during Pleistocene [Berger, 1999]) and the calculated time periodicities in the frame of 
the thermohydrogravidynamic theory [Simonenko, 2007]. 

The empirical time periodicity 94000 years [Hays, Imbrie and Shackleton, 1976] during Pleistocene is 
in good agreement with the calculated [S

 19  × 8  × 15  × 83 years) of the Earth’s global climatic variability related with the combined cosmic 
non-stationary energy gravitational influence on the Earth of the system  Sun-Moon, the Venus, the Mars,  
the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter. 

Taking this agreement into account, we revealed [S

×

is (related with the combined cosmic non-stationary energy gravitational influences on the Earth of the 
system  Sun-Moon,  the  Venus, the  Mars, the Jupiter and the Sun owing  to the gravitational interaction of 
the Sun with the Jupiter)  of  the  periodic  Earth’s  tectonic-endogenous heating and related global volcanic 
activity (characterized by the time periodicity  94620 years) induced by the periodic continuum deformation 
owing to the combined cosmic non-stationary energy gravitational influence on the Earth 

, the Venus, the Mars,  Jupiter and the Sun owing  to the gravitational interaction of the Sun with the 
Jupiter.  

The established cosmic energy gravitational genesis of the time periodicity 100845 years 
(27  × 3  × 15  × 83 years) [Simonenko, 2007] is in agreement with the experimental data [Pinxian et al., 2003; 
p. 2524-2535], which revealed the time periodicity 100000 years of the climatic variability.  The established 
cosmic energy gravitational genesis of the time periodicity 100845 years [Simonenko, 2007]  is also in 
agreement  with the experimental data [Pinxian et al., 2003; p. 2536-2548], which revealed the same time 
periodicit

ical time periodicity 100000 years [Muller and MacDonald, 1995] during Pleistocene is in good 
agreeme t w  the calculated time periodicity 100845 years [Simonenko, 2007]  of the Earth’s climatic 
variability  related with the combined cosmic non-stationary energy gravitational influence on the Earth of 
the system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of 
the Sun with the Jupiter. Taking into account this agreement, we revealed [Simonenko, 2007] the cosmic 
energy gravitational genesis (related with the combined cosmic non-stationary energy gravitational influence 
on the Earth of the system  Sun-Moon, the Venus, the Mars,   the Jupiter and the Sun owing  to the 
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y gravitational genesis (related 
with t

 t Ju te f

o account, we revealed [Simonenko, 2007] the cosmic energy gravitational genesis (related 
with t

u e f o

ented (in Table 2) empirical time periodicities of the Earth’s global climatic variability, 
we ca

d agreement with the empirical predominant time periodicity of 
10500

riodicities (in the frame of the thermohydrogravidynamic theory [Simonenko, 
2007a

gravitational interaction of the Sun with the Jupiter) of the periodic atmospheric-oceanic global planetary 
warming and cooling (characterized by the time periodicity 100845 years) as a consequence of the 
greenhouse effect produced by the gravity-induced periodic global tectonic-volcanic activization 
accompanied by the increased output  of the atmospheric greenhouse gases.  

The empirical time periodicity 106000 years [Hays, Imbrie and Shackleton, 1976] during Pleistocene 
is in good agreement with the calculated [Simonenko, 2007] time periodicity 107568 years  
(0.5  × 27  × 3  × 32  × 83 years)  of the Earth’s global climatic variability related with the combined cosmic 
non-stationary energy gravitational influence on the Earth of the system  Sun-Moon, the Venus, the Mars, 
the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter. Taking into 
account this agreement, we revealed  [Simonenko, 2007] the cosmic energ

he combined cosmic planetary non-stationary energy gravitational influence on the Earth of the  system  
Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun 
with he pi r) o  the periodic Earth’s global tectonic-endogenous heating and related global volcanic 
activity (characterized by the time periodicity 107568 years induced by the periodic continuum deformation 
owing to the combined cosmic non-stationary energy gravitational influence on the Earth of the system  Sun-
Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with 
the Jupiter).  

The empirical time periodicity 122000 years [Hays, Imbrie and Shackleton, 1976] during Pleistocene 
is in good agreement with the calculated [Simonenko, 2007] average time periodicity 121612.5 years  
(235  × 3  × 15  × (11+12)  × 0.5 years) of the Earth’s global climatic variability related with the combined 
cosmic non-stationary energy gravitational influence on the Earth of the system  Sun-Moon, the Venus, the 
Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter. Taking this 
agreement int

he combined cosmic non-stationary energy gravitational influences on the Earth of the system  Sun-
Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with 
the J pit r) o the peri dic global atmospheric-oceanic warming (characterized by the average time 
periodicity 121612.5 years)  as a consequence of the greenhouse effect produced by the gravity-induced 
periodic global tectonic-volcanic activization accompanied by the increased output  of the atmospheric 
greenhouse gases.   

Using the presented (in Table 2) calculated time periodicities of the Earth’s global climatic variability, 
we calculated [Simonenko, 2007] the average theoretical time periodicity 106160 years, which is in good 
agreement with the empirical time periodicity 106000 years corresponding to the main maximum of the 
spectrum [Hays, Imbrie and Shackleton, 1976] of the combined isotopic-oxygen variations based on the 
empirical data RC11 - 120 and E49 - 18.  

Using the pres
lculated [Simonenko, 2007]  the average empirical time periodicity 105500 years, which is in fairly 

good agreement with the empirical time periodicity 106000 years corresponding to the main maximum of the 
spectrum [Hays, Imbrie and Shackleton, 1976]  of the combined isotopic-oxygen variations based on the 
empirical data RC11 - 120 and E49 - 18. The calculated [Simonenko, 2007] average theoretical time 
periodicity 106160 years is in fairly goo

0 years [Gorbarenko et al., 2011] characterizing the Okhotsk Sea productivity and lithological proxies 
stacks during the last 350 kyr.  

The agreement of the obtained average theoretical global time periodicity 106160 years [Simonenko, 
2007] with the empirical time periodicity 106000 years [Hays, Imbrie and Shackleton, 1976]  confirmed  
[Simonenko, 2007] the validity of the established cosmic planetary energy gravitational genesis (related with 
the combined cosmic non-stationary energy gravitational influence on the Earth of the system  Sun-Moon, 
the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the 
Jupiter) of the revealed  time pe

; 2007; 2008]) of the Earth’s global climatic variability. The agreement of the obtained average 
theoretical global time periodicity 106160 years [Simonenko, 2007] with the empirical time periodicity 
105000 years [Gorbarenko et al., 2011] is the additional confirmation of the validity of the established 
cosmic planetary energy gravitational genesis (related with the combined cosmic non-stationary energy 
gravitational influence on the Earth of the system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun 
owing  to the gravitational interaction of the Sun with the Jupiter) of the revealed  [Hays, Imbrie and 
Shackleton, 1976]  time periodicities of the Earth’s global climatic variability. 
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 cosmic factors: 
G-factor  related with the combined cosmic non-stationary energy gravitational influences on the 

Earth of the system Sun-Moon, the Mercury, the Venus, the Mars, the Jupiter 
and the Sun owing to the gravitational interaction of the Sun with the Jupiter; 

-factor related to the tectonic-endogenous heating  of the Earth as a consequence of the periodic 

e 

Using t eous energy 
gravitational in  e  [Simonenko, 
2009; 2  
of the plan term time 
periodicities (of the solar activity induced by the planetary energy gravitational influences on the Sun): 
                                                                    0.96359

 
 
3.6.5. Cosmic energy gravitational genesis of the modern short-term time periodicities of the 

Earth’s global climate variability determined by the combined

G(a)
continuum deformation of the Earth due to the G -factor; 

) facto nce of th
periodic variable (increasing or decreasing) output of the heated greenhouse volcanic gases  

G(b - r related to the periodic atmospheric-oceanic  warming or cooling as a conseque

and the related variable greenhouse effect induced by the periodic variable  
tectonic-volcanic activity (activization or weakening) due to the G -factor; 

-factor related to the periodic variations of the solar activity owing to the periodic variations of )G(c
the combined planetary non-stationary energy gravitational influence on the Sun 

 
 

he evaluations [Simonenko, 2009; 2010] of the relative maximal instantan
fluences of the planets of the Solar System on the Sun and using the stablished

010] time periodicities of the solar activity induced by the energy gravitational influences on the Sun
ets of the Solar System, we established [Simonenko, 2009; 2010]  the following short-

÷ 1.2302  years                                                       (3.202)  
determined by the  combined energy gravitational influence of the Mercury, the Venus and the Earth on the 
Sun;  
                                                                          5.5359 ÷ 7  years                                                            (3.203)  
determined by the  combined energy gravitational influence of the Mercury, the Venus and the Earth on the 
Sun;  
                                                                         11 ÷ 13

 Mars on the Sun; 

.008  years                                                           (3.204)  
determined by the  combined energy gravitational influence of the Jupiter, the Mercury, the Venus, the Earth 
and the
                                                                     19.9945 ÷ 29.4525  years                                                    (3.205)  
determined by the  combined energy gravitational influence of the Jupiter, the Mercury, the Saturn and the 
Venus on the Sun; 

3 ÷ 35.73  years                                                        (3.206)                                                                                3
determined by the  combined energy gravitational influence of the Jupiter, the Mercury, the Venus, the Mars 
and the Earth on the Sun; 
                                                                              47.36 ÷ 53  years                                                        (3.207)  
determined by the  combined energy gravitational influence of the Jupiter, the Mercury, the Venus and the 
Earth on the Sun; 
                                                                         58.905 ÷ 63.3564  years                                                  (3.208)  
determined by the  combined energy gravitational influence of the Jupiter, the Mercury, the Saturn and the 
Venus on the Sun; 
                                                                               83 ÷ 88

h  on the Sun;  
7

.4095 years                                                    (3.209)  
determined by the  combined energy gravitational influence of the Jupiter, the Mercury, the Saturn, the 
Venus and the Eart
                                                                        106.717 ÷ 118.58  years                                                 (3.210) 
determined by the  combined energy gravitational influence of the Jupiter, the Mercury, the Saturn and the 
Mars on the Sun. 

Taking into account these short-term tim periodicities (founded in Subsection 6.2.9 of the e 

of the monographs [Simonenko, 2009; 2010]) of the global climate 
ita

ties (founded in Subsections 4.4.5.3 and 4.4.5.4 of the monographs [Simonenko, 2009; 
2010]

monographs [Simonenko, 2009; 2010]) of the solar activity; the modern short-term time periodicities 
(founded in Subsection 4.3.2.10 
variability induced by the non-stationary energy grav tional influences on the Earth of the Mercury, the 
Venus, the Moon, the Jupiter and the Sun owing to the gravitational interaction of the Sun with the Jupiter; 
the time periodici

) of the Earth’s periodic  global climate variability induced by the different combinations of the cosmic  
non-stationary energy gravitational influences of the system Sun-Moon, the Venus, the Mars,  the Jupiter and 
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the Sun owing to the gravitational interaction of the Sun with the Jupiter; we evaluated  [Simonenko, 2009; 
2010] the following ranges of the main modern short-term time periodicities of the Earth’s global climate 
variability: 
                                                                             [0.96359÷ 3] years                                                      (3.211)  
consistent approximately with the empirical range [1÷ 3] years  of the time periodicities   [Li et al., 2001; 
Krokhin, 2004; Ponomarev et al., 2007] of the global climate variability;         
                                                                          (3÷ 7] years                                                           (3.212)  
consistent with the same empirical range  (3÷ 7] years  of the time periodicities  [Thompson and Wallace, 
1998; Wang and Ikeda, 2000; Gong et al., 2003; Ogi and Tachibana, 2006; Oort and Yienger, 1996; White 
and Cayan, 2000; Diaz et al., 2001; Fu and Teng, 1993; Ponomarev et al., 1999a;  Ponomarev et al., 1999b; 
Ponomarev et al., 2007] related with the ENSO climate variability; 
                                                                                   (7÷ 15] years                                                         (3.213)  
consistent approximately with the evaluated  empirical  range 8 ÷ 15 years [Ponomarev et al., 2007] of the 
quasi-decadal climate variability [Nakamura et al., 1997; Tourre et al., 2001; Auad, 2003; Qiu, 2003; 
Ponomarev et al., 2003a; 2003b; 2003c; Polonsky et al., 2004]; 
                                                                                   [16÷ 19] years                                                       (3.214)  
consistent approximately with the evaluated empirical [Ponomarev et al., 2007] quasi-twenty-year climate 
variability of the Pacific Ocean and the continental ma inal Pacific areas [Latif and Barnett, 1994; Minobe, rg
1997; Tourre et al., 2001; Auad, 2003]; 
                                                                           [19.9945÷ 29.4525] years                                             (3.215) 
consistent with the evaluated empirical range 20 ÷ 30 years [Ponomarev et al., 2007] of the climate 
variability for the Asian continental (adjacent to the Far Eastern seas) and Pacific marginal areas; 
                                                                                  [32÷ 36] years                                                        (3.216)  
consistent approximately with the evaluated [Dmitrieva and Ponomarev, 2012] empirical time periodicity 37  
years  characterizing the South-Eastern tropical area, Kuroshio Current region (including East China an 
Japan/East Seas), central and northeastern Pacific; 
                                                                                  [16÷ 36] years                                                        (3.217)  
consistent approximately with the evaluated [Ponomarev et al., 2007] empirical range 15  ÷ 35 years  of the 
time periodicities of the global climate variability [Yamagata and Masumoto, 1992; Trenberth and Hurrel, 
1994;  Latif and Barnett, 1994; Miller et al., 1994; Delworth et al., 1996;  Zhang et al., 1997;  Mantua et al., 
1997; Minobe and Mantua, 1999;  Tourre et al., 2001; Auad, 2003; Ponomarev et al., 2003a; 2003b; 2003c]; 
                                                                                [41.5÷ 54] years                                                       (3.218)  

 consistent approximately with the evaluated (based on the wavelet analysis) interdecadal cycle of 
approximately 50 years [Goncharova, Gorbarenko, Shi, Bosin, Fischenko, Zou and Liu, 2012] characterizing 
the regional climate variability of the Japan Sea, and in good agreement with the estimated (based on the 
spectral Fourier analysis) time periodicity 48 years [Kalugin and Darin, 2012] obtained from the studies of 
sediments from Siberian and Mongolian lakes; 
                                                                               [57÷ 63.3564] years                                                  (3.219)  
consistent approximately with the revealed climatic time periodicity 60 years [Monin and Sonechkin, 2005]; 
                                                                                   [76÷ 96] years                                                       (3.220)  
in good agreement with the estimated (based on the spectral Fourier analysis) time periodicity 88 years 
[Kalugin and Darin, 2012] obtained from the studies of sediments from Siberian and Mongolian lakes;  
                                                                             9÷    [9 124.5] years                                                    (3.221)  
consistent approximately with the evaluated [Ponoma v et al., 2007] quasi-hundred-year time periodicity of re
the global climate variability [Auad, 2003; Miller and Schneider, 2000; Webster and Yang, 1992; Li et al., 
2001; Nakamura et al., 2002; Global-regional linkage in the Earth system, 2002; Overland et al., 1999; s 
Vasilevskaya et al., 2003; Savelieva et al., 2004], and in good agreement with the estimated (based on the 
spectral Fourier analysis) time periodicity 109 years [Kalugin and Darin, 2012] obtained from the studies of 
sediments from Siberian and Mongolian lakes, and consistent approximately with the evaluated (based on the 
wavelet analysis) interdecadal cycle of approximately 100 years [Goncharova, Gorbarenko, Shi, Bosin, 
Fischenko, Zou and Liu, 2012] characterizing the regional climate variability of the Japan Sea.                        
 The combination of the founded ranges  (3.218)  and (3.219) gives the explanation of the evaluated 
empirical range 50  ÷ 70 years of the time periodicities [Minobe, 1997] of the global climate variability in the 
northern region of the Pacific Ocean and for the Northern America. 
 The range (3.216) of the global climatic time periodicities  32÷ 36 years is determined by the range 
(3.206) of the time periodicities 33 ÷ 35.73  years of the solar activity (induced by the  combined energy 
gravitational influence of the Jupiter, the Mercury, the Venus, the Mars and the Earth on the Sun) and mainly 
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the range of the global climatic (and seismotectonic) time periodicities  3633÷  years ( )1211(3 ÷×  years)  
[Simonenko, 2007] elated with the combined cosmic non-stationary energy gravitational influence on the  r
Earth of the system  Sun-Moon, the Venus, the Jupiter and the Sun o gravitational interaction of wing  to the 
the Sun with the Jupiter. The established time periodicity 35 years [Hattory, 1977] of the sesmotectonic 
activity of various regions of the seis ic zone of the Pacific Ring is in good agreement with the mean value m
34.5 years of the established range of the global climatic (and seismotectonic) time periodicities  3633÷  
years [Simonenko, 2007].  The mean value 34.5 years (of the established range of the g ic (and lobal climat
seismotectonic) time periodicities  3633÷  years [Simonenko, 2007]) is also in good agreement with  the 
evaluated [Dmitrieva and Ponomarev, 2012] empirical time periodicity 37  years  characterizing the South-
Eastern tropical area, Kuroshio Current region (including East China and Japan/East Seas), central and 
northeastern Pacific. These good agreement (of the independent studies [Hattory, 1977; Simonenko, 2007; 
Dmitrieva and Ponomarev, 2012]) confirms the validity of the thermohydrogravidynamic  theory
[Simonenko, 2007; 2009; 2010] of the seismotectonic, volcanic and climatic evolution of the Earth.  
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3.7.  The cosmic energy gravitational genesis of the seismotectonic (and volcanic) activity and the 
global climate variability induced (owing to the G-factor, -factor and -factor) )G(a )G(b

 by the combined non-stationary cosmic energy gravitational influences on the Earth of the 
system  Sun-Moon, the Venus,  the Mars, the Jupiter and the Sun (owing to the gravitational  

interaction of the Sun with  the Jupiter, the Saturn, the Uranus and the Neptune)  
 

3.7.1. The time periodicities of the maximal (instantaneous and integral) energy gravitational 
influences of the Sun on the Earth owing to the gravitational interaction of the Sun 
with the outer large planets (the Jupiter, the  Saturn, the Uranus and the Neptune) 

 
        
Taking into account the results of Subsection 3.3 (revealing the very significant  energy gravitational 

influence of the Sun on the Earth owing to the gravitational interaction of the Sun with the outer large 
planets of the Solar System), it is necessary to  deduce (using the generalized differential formulation (1.50) 
of the first law of thermodynamics and the related results of Subsections 3.3 for the Earth)  the time 
periodicities of the maximal (instantaneous and integral) energy gravitational influences of the Sun on the 
Earth owing to the gravitational interaction of the Sun with the outer large planets (the Jupiter, the  Saturn, 
the Uranus and the Neptune). 

 
 

3.7.1.1. The time periodicities of the maximal (instantaneous and integral) energy 
 gravitational influences on the Earth of the Jupiter and the Sun owing to the gravitational  

interaction of the Sun with the Jupiter  
  
Using the results of Subsections 3.3.1 and  3.6.2.3, we have  the  successive approximations for the 

time  periodicities [Simonenko, 2007]  11)(T 1ЗJ, = years,  12)(T 2ЗJ, = years and years   (given 
by (3.188), (3.189) and (3.190), respectively) of recurrence of the maximal (instantaneous and integral) 
energy gravitational influences on the Earth  of the Jupiter [Simonenko, 2007] and the Sun (owing  to the 
gravitational interaction of the Sun with the Jupiter) in the first, second and third approximations, 
respectively.  

 83)(T 3ЗJ, =

 
 

3.7.1.2. The time periodicities of the maximal (instantaneous and integral) energy 
 gravitational influences on the Earth of the Saturn and the Sun owing to the gravitational  

interaction of the Sun with the Saturn  
 

 Let us obtain (in the frame of the real elliptical orbits of the Earth and the Saturn) the first, second and 
third approximations for the time periodicities characterizing the maximal (instantaneous and integral) 
energy gravitational influences on the Earth of the Saturn  and the Sun owing to the gravitational interaction 
of the Sun with the Saturn.  If the configuration of the Earth, the Saturn and the Sun (considered as the closed 
system) is characterized at any time moment by the maximal (instantaneous or integral) combined energy 
gravitational influences on the Earth of the Saturn and the Sun (owing to the gravitational interaction of the 
Sun with the Saturn), then the Earth, the Saturn and the Sun will have the recurrence of the same 
(approximately) configuration after different integer numbers of circulations  circulations of the SAT,3 ( l
Saturn around the combined mass center of the Sun and the Saturn and   circulations of the Earth SATЗ,  m
around the combined mass center of the Sun and the Saturn) to satisfy the following condition: 
                                                                      ТSAT,3  l SAT  = ТSATЗ,  m З  .                                                                (3.222)  

Following the known method [Perelman, 1956], we present the ratio  by the following mathematical 
fraction:  

3SAT T/ T

                                             .
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+
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Considering the first approximation of the ratio  given by the rational number  

, we have from condition (3.222)  the first approximation:                                                    
3SAT T/ T

29 /m SAT,3SAT3, =l
                                                                           ЗSAT T 29 T ≈                                                                     (3.223)  
denoting that 29 circulations of the Earth (around the  combined mass center of the Sun and the Saturn) 
correspond approximately to 1 circulation of the Saturn around the  combined mass center of the Sun and the 
Saturn. The first approximation gives the first approximate time periodicity years of  the 
maximal (instantaneous or integral) combined energy gravitational influences (in the first approximation) on 
the Earth of the Saturn and the Sun owing to the gravitational interaction of the Sun with the Saturn.  

 29)(T 1ЗSAT, =

Considering the second approximation of the ratio  given by the following rational number  3SAT T/ T

                                                          ,
2
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2
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 l

   

we have from condition (3.222) the second approximation:                                                       
                                                                          ЗSAT T 59 2T ≈                                                                    (3.224)  
denoting that 59 circulations of the Earth (around the  combined mass center of the Sun and the Saturn) 
correspond approximately to 2 circulations of the Saturn around the  combined mass center of the Sun and 
the Saturn. The second approximation (3.224) gives the second approximate time periodicity 

years of the maximal (instantaneous or integral) combined energy gravitational influences (in 
the second approximation) on the Earth of the Saturn and the Sun owing to the gravitational interaction of 
the Sun with the Saturn.  

 59)(T 2ЗSAT, =

Considering the third approximation of the ratio  given by the following rational number  3SAT T/ T

                                                          ,
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we have from condition (3.222) the third approximation:                                                       
                                                                               ЗSAT T 265 9T ≈                                                            (3.225)  
denoting that 265 circulations of the Earth (around the  combined mass center of the Sun and the Saturn) 
correspond approximately to 9 circulations of the Saturn around the  combined mass center of the Sun and 
the Saturn. The third approximation (3.225) gives the third approximate time periodicity 

years of the maximal (instantaneous or integral) combined energy gravitational influences 
(in the third approximation) on the Earth of the Saturn and the Sun owing to the gravitational interaction of 
the Sun with the Saturn.  

 265)(T 3ЗSAT, =

Thus, we found the time periodicities: 
                                                                          29)(T 1ЗSAT, = years,                                                       (3.226)  

                                                                59)(T 2ЗSAT, = years,                                                      (3.227)  

                                                                265)(T 3ЗSAT, = years                                                      (3.228)  
of recurrence of the maximal (instantaneous and integral) combined  energy gravitational influences  on the 
Earth of the Saturn and Sun (owing to the gravitational interaction of the Sun with the Saturn) in the first, 
second and third approximations, respectively. 

 
3.7.1.3. The time periodicity of the maximal (instantaneous and integral) energy 

 gravitational influences on the Earth of the Uranus and the Sun owing to the  
gravitational interaction of the Sun with the Uranus 

 
Let us obtain (in the frame of the real elliptical orbits of the Earth and the Uranus) the first 

approximation for the time periodicities characterizing the maximal (instantaneous or integral)  energy 
gravitational influences on the Earth of the Uranus  and the Sun owing to the gravitational interaction of the 
Sun with the Uranus.  If the configuration of the Earth, the Uranus and the Sun (considered as the closed 
ystem) is characterized at any time moment by the maximal (instantaneous or integral) combined energy 
gravitational influences on the Earth of the Uranus and the Sun (owing to the gravitational interaction of the 
Sun with the Uranus), then the Earth, the Uranus and the Sun will have the recurrence of the same 
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configuration (approximately) after different integer numbers of circulations  circulations of the U,3 w( 
Uranus around the combined mass center of the Sun and the Uranus and   circulations of the Earth UЗ,m  
around the combined mass center of the Sun and the Uranus) to satisfy the following condition: 
                                                                        ТU,3  w U  = ТUЗ,m  З  .                                                                     (3.229)  

Following the known method [Perelman, 1956], we present the ratio  by the following mathematical 
fraction:  

3U T/ T

                                                    .
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Considering the first approximation of the ratio  given by the rational number  

, we have from condition (3.229)  the first approximation:                                                       
3U T/ T

84w/m U,3U3, =

                                                                                  ЗU T 84 T ≈                                                                     (3.230)  
denoting that 84 circulations of the Earth (around the  combined mass center of the Sun and the Uranus) 
correspond approximately to 1 circulation of the Uranus around the  combined mass center of the Sun and 
the Uranus. The first approximation gives the first approximate time periodicity years of  the 
maximal (instantaneous or integral) combined energy gravitational influences (in the first approximation) on 
the Earth of the Uranus and the Sun owing to the gravitational interaction of the Sun with the Uranus. Thus, 
we found the following time periodicity: 

 84)(T 1ЗU, =

                                                                             84)(T 1ЗU, = years,                                                       (3.231)  
of recurrence of the maximal (instantaneous and integral) combined  energy gravitational influences  on the 
Earth of the Uranus and Sun (owing to the gravitational interaction of the Sun with the Uranus) in the first 
approximation.  
 
 

3.7.1.4. The time periodicities of the maximal (instantaneous and integral) energy 
 gravitational influences on the Earth of the Neptune and the Sun owing to the gravitational  

interaction of the Sun with the Neptune  
 

 Let us obtain (in the frame of the real elliptical orbits of the Earth and the Neptune) the first, second 
and third approximations for the time periodicities characterizing the maximal (instantaneous or integral) 
energy gravitational influences on the Earth of the Neptune  and the Sun owing to the gravitational 
interaction of the Sun with the Neptune.  If the configuration of the Earth, the Neptune and the Sun 
(considered as the closed system) is characterized at any time moment by the maximal  (instantaneous or 
integral) combined energy gravitational influences on the Earth of the Neptune and the Sun (owing to the 
gravitational interaction of the Sun with the Neptune), then the Earth, the Neptune and the Sun will have the 
recurrence of the same (approximately) configuration after different integer numbers of circulations  N,3(p 
circulations of the Neptune around the combined mass center of the Sun and the Neptune and   NЗ,m  
circulations of the Earth around the combined mass center of the Sun and the Neptune) to satisfy the 
following condition: 
                                                                         ТN,3p N  = ТNЗ,m  З  .                                                                        (3.232)  

Following the known method [Perelman, 1956], we present the ratio  by the following mathematical 
fraction:  

3N T/ T

                                                   .

233
1563

13

11

1164
365.3
60189

T
T p/m 

3

N
N,3N3,

+
+

+
+===                                              

Considering the first approximation of the ratio  given by the rational number 3N T/ T



165 p/m N,3N3, = , we have from condition (3.232)  the first approximation:                                                       

                                                                              ЗN T 165 T ≈                                                                       (3.233)  
denoting that 165 circulations of the Earth (around the  combined mass center of the Sun and the Neptune) 
correspond approximately to 1 circulation of the Neptune around the  combined mass center of the Sun and 
the Neptune. The first approximation gives the first approximate time periodicity years  of  the 
maximal (instantaneous or integral) combined energy gravitational influences (in the first approximation) on 
the Earth of the Neptune and the Sun owing to the gravitational interaction of the Sun with the Neptune.  

 165)(T 1ЗN, =

Considering the second approximation of the ratio  given by the following rational number       3N T/ T

                                                     ,
4

659

3
11

1164 p/m N,3N3, =
+

+=    

we have from condition (3.232) the second approximation:                                                       
                                                                                 ЗN T 659 4T ≈                                                              (3.234)  
denoting that 659 circulations of the Earth (around the  combined mass center of the Sun and the Neptune) 
correspond approximately to 4 circulations of the Neptune around the  combined mass center of the Sun and 
the Neptune. The second approximation (3.234) gives the second approximate time periodicity 

years of the maximal (instantaneous or integral) combined energy gravitational influences (in 
the second approximation) on the Earth of the Neptune and the Sun owing to the gravitational interaction of 
the Sun with the Neptune.  

 659)(T 2ЗN, =

Considering the third approximation of the ratio  given by the following rational number               3N T/ T

                                                    ,
13

2142

3
13

11

1164 p/m N,3N3, =

+
+

+=    

we have from condition (3.232) the third approximation:                                                       
                                                                             ЗN T 2142 13T ≈                                                              (3.235)  
denoting that 2142 circulations of the Earth (around the  combined mass center of the Sun and the Neptune) 
correspond approximately to 13 circulations of the Neptune around the  combined mass center of the Sun and 
the Neptune. The third approximation (3.235) gives the third approximate time periodicity 

years of the maximal (instantaneous or integral) combined energy gravitational influences 
(in the third approximation) on the Earth of the Neptune and the Sun owing to the gravitational interaction of 
the Sun with the Neptune.  

 2142)(T 3ЗN, =

Thus, we found the time periodicities: 
                                                                            165)(T 1ЗN, = years,                                                      (3.236)  

                                                                  659)(T 2ЗN, = years,                                                     (3.237)  

                                                                 2142)(T 3ЗN, = years                                                      (3.238)  
of recurrence of the maximal (instantaneous and integral) combined  energy gravitational influences  on the 
Earth of the Neptune and Sun (owing to the gravitational interaction of the Sun with the Neptune) in the first, 
second and third approximations, respectively. 
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3.7.1.5. The fundamental global time periodicities (related to the combined planetary, lunar and solar  

non-stationary energy gravitational influences on the Earth) of the Earth’s periodic global 
seismotectonic (and volcanic) activity and the global climate variability induced by the different 
combinations of the cosmic non-stationary energy gravitational influences of the system  Sun-

Moon, the Venus, the Mars, the Jupiter and the Sun owing to the  gravitational interaction of the 
Sun with the Jupiter, the Saturn, the Uranus and the Neptune 

 
Using the equivalent generalized differential formulations (1.43), (1.50) and  (1.53) [Simonenko, 

2007] of the first law of thermodynamics for the Earth and the calculated time periods of the periodic 
recurrence of the maximal integral energy gravitational influences on the Earth of the system Sun-Moon, the 
Venus, the Mars and the Jupiter, we calculated [Simonenko, 2007] the set of the gravity-induced time 
periodicities (3.196) of the Earth’s periodic seismotectonic and volcanic activity and the global climate 
variability related with the periodic recurrence of the maximal combined integral energy gravitational 
influences on the Earth induced by the different combinations of the cosmic non-stationary energy 
gravitational influences of the system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing to the  
gravitational interaction of the Sun with the Jupiter, the Saturn, the Uranus and the Neptune. Taking into 
account the very significant non-stationary energy gravitational influence (established in Subsection 3.3) on 
the Earth of the Sun owing to the  gravitational interaction of the Sun with the Jupiter and using the same 
successive approximations for the time periodicities [Simonenko, 2007] years,  11)(T 1ЗJ, =

 12)(T 2ЗJ, = years and years   (given by (3.188), (3.189) and (3.190), respectively) of  83)(T 3ЗJ, =
recurrence of the maximal (instantaneous and integral) energy gravitational influences on the Earth  of the 
Jupiter [Simonenko, 2007] and the Sun (owing  to the  gravitational interaction of the Sun with the Jupiter in 
the first, second and third approximations, respectively), we have expanded in Subsection 3.6.2 the previous 
results (taking into account the very significant energy gravitational influence on the Earth of the Sun owing 
to the gravitational interaction of the Sun with the Jupiter) of the monographs [Simonenko, 2007; 2009; 
2010] by establishing the time periodicities of the maximal (instantaneous and integral) energy gravitational 
influences on the Earth of the system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the 
gravitational interaction of the Sun with the Jupiter. We expand in this Subsection the results of the 
Subsection 3.6.2 by establishing the fundamental global time periodicities (related to the combined 
planetary, lunar and solar non-stationary energy gravitational influences on the Earth) of the Earth’s periodic 
global seismotectonic (and volcanic) activity and the global climate variability induced by the different 
combinations of the cosmic non-stationary energy gravitational influences on the Earth of the system  Sun-
Moon, the Venus, the Mars, the Jupiter and the Sun owing to the  gravitational interaction of the Sun with 
the Jupiter, the Saturn, the Uranus and the Neptune.  

It was founded [Simonenko, 2007; 2009; 2010] that the time periodicities of the Earth’s global climate 
variability are determined by the combined cosmic factors: G-factor  related with the combined cosmic non-
stationary energy gravitational influences on the Earth, -factor related to the tectonic-endogenous )G(a
heating  of the Earth as a consequence of the periodic continuum deformation of the Earth due to the G -
factor, -factor related to the periodic atmospheric-oceanic  warming or cooling as a consequence of the )G(b
periodic variable (increasing or decreasing) output of the heated greenhouse volcanic gases and the related 
variable greenhouse effect induced by the periodic variable tectonic-volcanic activity (activization or 
weakening) due to the -factor, -factor related to the periodic variations of the solar activity owing to G )G(c
the periodic variations of the combined planetary non-stationary energy gravitational influence on the Sun. 
We consider in this Subsection the combined  G,  and  cosmic factors related with the cosmic )G(a )G(b
non-stationary energy gravitational influences on the Earth of the system  Sun-Moon, the Venus, the Mars, 
the Jupiter and the Sun owing to the  gravitational interaction of the Sun with the Jupiter, the Saturn, the 
Uranus and the Neptune.  

We take into account the established successive approximations for the commensurable [Alfvėn and 
Arrhenius, 1976] time periodicities of recurrence of the maximal (instantaneous and integral) energy 
gravitational influences on the Earth: 1),(iyears3}){(T iЗMOON,-S ==   the Metonic cycle 

of    for the system Sun-Moon [Simonenko, 2007; 2009; 2010]; 
  for the Venus [Simonenko, 2007; 2009; 2010]; 

2),(iyears8 =
years19 ,3)(i = 4)(iyears 27 =

1),(j years 3}){(T jЗV, == 2)(j years  8 =



 1),(k years 15}){(T kЗMARS, == 2),(k years 32 =   )3(k years 47 = for the Mars [Simonenko, 2007; 

2009; 2010]; 1),(nyears11}){(T nЗJ, ==  2),(nyears12 = )3(nyears83 = for the Jupiter [Simonenko, 
2007; 2009; 2010] and for the Sun owing to the  gravitational interaction of the Sun with the Jupiter;  

1),(myears29}){(T mЗSAT, ==   2),(myears59 =  )3(myears265 =  for the Saturn and for the Sun  

owing to the  gravitational interaction of the Sun with the Saturn; 1)(qyears84}){(T qЗU, ==  for the 
Uranus and for the Sun owing to the  gravitational interaction of the Sun with the Uranus; 

 1),(ryears165}){(T rЗN, == ),2(ryears965 =  )3(ryears2142 =  for the Neptune and for the Sun 
owing to the  gravitational interaction of the Sun with the Neptune. 

Based on the generalized  formulation (1.50) of the first law of thermodynamics used for the Earth as a 
whole, we  found  (taking into account the established [Simonenko, 2007] cosmic -factor and -
factor) the fundamental sets of the fundamental global seismotectonic and volcanic time periodicities  
(of the periodic global seismotectonic and volcanic activities owing to the G -factor)  and the fundamental 
global climatic periodicities  (of the periodic global climate variability and the global variability of the 
quantities of the fresh water and glacial ice resources  owing to the -factor):  

G )G(b

ftec,T

fclim1,T
)G(b

                        
})(T,)(T,)(T,)(T,)(T,)(T,)(T.{..

TTT                                           
876542o

rЗN,qЗU,mЗSAT,nЗJ,kЗMARS,jЗV,iЗMOON,-S

fenergy,fclim1,ftec,

lllllllMCL

===
                  (3.239)  

determined by the successive global fundamental periodicities  (defined by the least common 
multiples  of various successive time periodicities related to the different combinations of the 
following integer numbers:  

fenergy,T
L.C.M.

4; 3, 2, 1,i = 2; 1,j =   3; 2, 1,k =   3; 2, 1,n =  3; 2, 1,m =  
    1;q =  3; 2, 1,r =  1;,0o =l  1;,02 =l  1;,04 =l  1;,05 =l   1;,06 =l    1;,07 =l   ) of recurrence 

of the maximal combined energy gravitational influences on the Earth of the different combined 
combinations of the cosmic non-stationary energy gravitational influences on the Earth of the system Sun-
Moon, the Venus, the Mars, the Jupiter and the Sun owing to the gravitational interactions of the Sun with 
the Jupiter, the Saturn, the Uranus and the  Neptune.  

 1,08 =l

Based on the generalized  formulation (1.50) of the first law of thermodynamics used for the Earth as a 
whole, we  found  (taking into account the established [Simonenko, 2007] cosmic G -factor and the  
and -factors) the  fundamental set of the fundamental global climatic periodicities 

)G(a
)G(b

                
})(T,)(T,)(T,)(T,)(T,)(T,)(T.{..

2
1

2/TTT                                           

876542o
rЗN,qЗU,mЗSAT,nЗJ,kЗMARS,jЗV,iЗMOON,-S

fenergy,fendog,fclim2,

lllllllMCL

===
            (3.240) 

(of the periodic global climate variability and the global variability of the quantities of the fresh water and 
glacial ice resources related with the periodic tectonic-endogenous heating and related global volcanic 
activity) determined by the  and -factors related to the different combined combinations of the 
cosmic non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, the 
Mars, the Jupiter and the Sun owing to the gravitational interactions of the Sun with the Jupiter, the Saturn, 
the Uranus and the  Neptune.  

)G(a )G(b

 
 

3.7.1.6. The thermohydrogravidynamic solution of the fundamental problem of the origin of 
the major 100-kyr glacial cycle (during Pleistocene) determined by the 

non-stationary energy gravitational influences on the Earth of the system Sun-Moon, 
the Venus, the Jupiter and the Sun owing to the gravitational interactions of  

the Sun with the Jupiter, the Saturn,  the Uranus and the Neptune 
 

A simple Milankovitch origin of the 100-kyr glacial cycle “is ruled out” [Imbrie, Berger et al., 1993]  
“because the eccentricity-driven 100-kyr radiation cycle is much too small and its phase too late to force the 
corresponding climate cycle directly”. We present in Subsection 3.6.4 the results of the previous evaluation 
[Simonenko, 2007; 2009; 2010] of the mean time  periodicities 94620 years and 107568  years of the global 
climate variability determined by the factor and factor (related with the cosmic non-stationary 
energy gravitational influences on the Earth of the system  Sun-Moon, the Venus, the Mars, the Jupiter and 

-)G(a -)G(b
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the Sun owing  to the gravitational interaction of the Sun with the Jupiter)  and the mean time periodicities 
100845 years and 121612.5 years of the global climate variability determined by the factor (related 
with the cosmic non-stationary energy gravitational influences on the Earth of the system  Sun-Moon, the 
Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter). 
Taking into account the established (in Subsection 3.3) significance of the non-stationary energy 
gravitational influences on the Earth of the Sun owing to the  gravitational interaction of the Sun with the 
Jupiter, the Saturn, the Uranus and the Neptune, we present in this Subsection the thermohydrogravidynamic 
solution of the fundamental problem [Imbrie, Berger et al., 1993] of the origin of the major 100-kyr glacial 
cycle during the Milankovitch chron [Berger, 1994].  

-)G(b

The major 100-kyr glacial cycle is determined by the non-stationary energy gravitational influences on 
the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions 
of the Sun with the Jupiter, the Saturn and the Uranus. We obtain from formula (3.239) (for   1,o =l  1,2 =l  

) the following fundamental global periodicities  (in the 

range ) of the periodic global seismotectonic and volcanic activities (owing to the G -factor) 
and the periodic global climate variability and the global variability of the quantities of the fresh water and 
glacial ice resources  (owing to the -factor) determined by the combined planetary and solar non-
stationary energy gravitational influences on the Earth (of the system Sun-Moon, the Venus, the Jupiter and 
the Sun owing to the gravitational interactions of the Sun with the Jupiter, the Saturn and the Uranus): 

 ,04 =l  ,15 =l  1,6 =l  1,7 =l  08 =l fclim1,ftec, TT =

kyr12179 ÷

)G(b

                               = = =               fclim1,ftec, TT = }84,59,11,8,3.{.. MCL }84,59,11,3,8.{.. MCL
                                                  = = ,                                               (3.241)  }84,59,11,8,8.{.. MCL years109032
which is in good agreement with the predominant Mann’s (1967) period of  [Berger, 1988] in 
spectrum of geological data for the Missourian rocks;  

kyr109

                                       = = ,                                   (3.242)  fclim1,ftec, TT = }84,29,12,8,19.{.. MCL years92568
                                      = =                                      (3.243) fclim1,ftec, TT = }84,59,12,8,27.{.. MCL years89208
and  
                                       = = ,                                  (3.244)  fclim1,ftec, TT = }84,29,12,3,27.{.. MCL years87696
which are located near the empirical [Imbrie, Mix and Martinson, 1993] predominant period of   (in 

spectra of the oxygen isotopic  composition  records).  

kyr91
Oδ18

  The obtained fundamental global periodicities fclim1,ftec, TT =  (in the range  owing to the 
 and -factors) result to the mean fundamental global seismotectonic, volcanic and climatic 

periodicity of  

kyr12179 ÷
G )G(b

                                                      ><=>< fclim1,ftec, TT = ,                                                 (3.245)  years94626
which  enhances  the weak eccentricity-driven [Milankovitch, 1930] variations of solar insolation (related to 
the consistent predominant period of  [Berger, 1978]  in  variations of the orbital Earth’s 
eccentricity). It explains the predominant empirical [Ruddiman et al., 1986]  95-kyr  period in variations of 
the North Atlantic sea-surface temperatures for the last 1.1 million years. 

years94782

We obtain from the formula (3.240) (for  1,o =l   1,2 =l   ,04 =l   ,15 =l     1,6 =l  1,7 =l  08 =l ) the 
following fundamental global climatic periodicities  (in the range fclim2,T kyr12179÷ ) of the periodic 
global climate variability and the global variability of the quantities of the fresh water and glacial ice 
resources  (owing to the  and -factors)  determined by the combined non-stationary energy 
gravitational influences on the Earth (of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to 
the gravitational interactions of the Sun with the Jupiter, the Saturn and the Uranus):  

)G(a )G(b

                             =  = ,                                    (3.246)  fclim2,T }84,29,83,3,3.{..5.0 MCL⋅ years101094
which is in good agreement with the empirical periodicity near  in variations of the measured deep-

sea sediment oxygen isotopic composition   [Muller and MacDonald, 1996; Shackleton, 2000] and in 
variations of the atmospheric  [Pisias and Shackleton, 1984; Shackleton, 2000]; 

kyr100
Oδ18

2CO
                                    =   = ,                                       (3.247)  fclim2,T }84,59,12,8,19.{..5.0 MCL⋅ years94164
which is in good agreement with  the empirical periodicity of  [Hays et al., 1976] corresponding to kyr94



the predominant maximum of the calculated spectrum of the estimated summer sea-surface temperatures  
in the southern Indian Ocean during the past 468  kyr;  and 

sT

                                 =  = ,                                        (3.248)  fclim2,T }84,29,11,3,27.{..5.0 MCL⋅ years120582
which is located between the empirical  periodicities of and  [Hays et al., 1976] 
corresponding to the predominant maxima of the calculated spectra of the percentage of Cycladophora 
davisiana.  

kyr119 kyr122

The established fundamental global climatic periodicities  (in the range owing to 
the  and -factors) result to the mean fundamental global climatic periodicity  

fclim2,T kyr12179÷
)G(a )G(b

                                                   =>< fclim2,T years,105280                                                         (3.249)  
which is in good agreement with the empirical [Gorbarenko et al., 2011] climatic periodicity  
                                                                                                                                                    (3.250)  kyr105
(corresponding to the predominant maxima of the calculated spectra of the productivity and lithological 
stacks of the deep-sea sediment records for the Okhotsk Sea during the last 350 kyr) and with the empirical 
[Hays et al., 1976] climatic periodicity 
                                                                                                                                                   (3.251)  kyr106
 corresponding to the predominant maximum of the calculated spectrum of the measured oxygen isotopic 
composition  of planktonic foraminifera.  Oδ18

Based on the founded fundamental global climatic periodicities (in the range )  

and , we derive the mean combined fundamental global climatic periodicity   (determined 
by the combined non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the 
Venus, the Jupiter and the Sun owing to the gravitational interactions of the Sun with the Jupiter, the Saturn 
and the Uranus)   

kyr12179÷ fclim1,T

fclim2,T >< fclim,T

                                                         =                                                       (3.252)  >< fclim,T kyr,395.99
which is in good agreement with the empirical major 100-kyr glaciation cycle [Kukla, 1977; Imbrie, Berger 
et al., 1993] characterizing the Milankovitch chron [Berger, 1994]. 

We obtain from formula (3.239) (for  1,o =l  1,2 =l  ,04 =l  ,15 =l  1,6 =l  1,7 =l  18 =l ) the 
fundamental global seismotectonic, volcanic and climatic periodicity (of the periodic global seismotectonic 
and volcanic activities (owing to the G -factor) and the periodic global climate variability and the global 
variability of the quantities of the fresh water and glacial ice resources  (owing to the -factor) 
determined by the combined planetary and solar non-stationary energy gravitational influences on the Earth 
of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of the 
Sun with the Jupiter, the Saturn, the Uranus and the Neptune) 

)G(b

                          years124236}2142,84,29,12,3,3.{..TT fclim1,ftec, === MCL ,                           (3.253)  
which is located between the estimated predominant 123818-yr [Berger, 1978] and 125-kyr [Berger, 1999]  
periods  of variations of the orbital Earth’s eccentricity. 

We obtain from formula (3.240) (for  1,o =l  1,2 =l   ,04 =l   ,15 =l   1,6 =l  1,7 =l  18 =l ) the 
fundamental global climatic periodicity   
                       =fclim2,T =⋅ }2142,84,29,12,8,3.{..5.0 MCL =⋅ }2142,84,29,12,3,8.{..5.0 MCL     

                                  }2142,84,29,12,8,8.{..5.0 MCL⋅=   =                                (3.254)  years124236
of the periodic global climate variability and the global variability of the quantities of the fresh water and 
glacial ice resources (owing  to the  and -factors) determined by the combined non-stationary 
energy gravitational influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun 
owing to the gravitational interactions of the Sun with the Jupiter, the Saturn,  the Uranus and the Neptune.  

)G(a )G(b

The founded fundamental global climatic periodicities yr124236T fclim1, =  (owing to the -

factor) and  (owing to the  and -factors) determine the combined 
fundamental global climatic periodicity (determined by the combined non-stationary energy gravitational 
influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 
gravitational interactions of the Sun with the Jupiter, the Saturn,  the Uranus and the Neptune) 

)G(b
yr124236T fclim2, = )G(a )G(b

                                                          years124236T fclim, = ,                                                        (3.255)  
which is in good agreement with the climatic period of  characterizing the Croll chron [Berger, kyr125
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us, the generalized thermohydrogravidynamic theory [Simonenko, 2007; 2009; 2010] of the 
paleoc

 of the origin of the m

 

3.8. The analysis of the global seismicity and volcanic activity of the Earth from 

bi  
 of the maximal seismotectonic, volcanic and climatic activities of the Earth  

1999].  
Th
limate generalizes the Milankovitch’s (1930) theory of the paleoclimate (taking into account the  

variability of solar insolation related to the periodic variations of the eccentricity of the Earth’s orbit due to 
the  G -factor) by taking into account the additional established cosmic )G(a , )G(b  and )G(c -factors. The 
presented thermohydrogravidynamic solution of the fundamental problem ajor 100-kyr 
glacial cycle (determined during Pleistocene by the non-stationary energy gravitational influences on the 
Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of  
the Sun with the Jupiter, the Saturn and the Uranus) shows that the Thermohydrogravidynamics (Cosmic 
Physics)  of the Solar System represents the reliable thermohydrogravidynamic theory destined to play an 
important role for the stable evolutionary development of humankind in the present and forthcoming epochs 
of the critical surrounding cosmic, seismotectonic, volcanic and climatic conditions of the human existence 
on the Earth. 

 

the biblical Flood (occurred in 2104 BC according to the orthodox  
blical chronology) to found the forthcoming range 20612020 ÷  AD

during the past 708696 ÷ years of  the history of humankind 
 

 
3.8.1. The foundation of the ranges of the fundamental global seismotectonic, volcanic and 

climatic periodicities years708696TT fclim1,ftec, ÷==   and   years354348TT fclim2,ftec, ÷==   determin
by the combined predominant non-stationary energy gravitational influences  

ed 

on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 

 

o evaluate the behavior of the global seismicity and volcanic activity of the Earth from the biblical 
Flood 

gravitational interactions of  the Sun with the Jupiter and the Saturn 

 
T
(occurred in 2104 BC according to the orthodox biblical chronology) to the beginning of the 21st 

century AD, we deduced [Simonenko, 2012] from formula (3.239) (for  1,o =l  1,2 =l  ,04 =l  
 ,15 =l  1,6 =l  ,07 =l  08 =l ) the ranges of the following fundamental global seismotectonic, volcanic and 

mined by the combined predominant non-stationary energy gravitational 
influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 
gravitational interactions of  the Sun with the Jupiter and the Saturn): 

          

climatic periodicities (deter

== fclim1,ftec, TT  ÷}29,12,8,3.{..( MCL 12,3,3.{.. MCL })59, =           (3.256)  

and  
         

years708696÷
 

  TT fclim2,ftec, == ÷}29,12,3,3.{.. ( MCL })59,12,3,3.{..5.0 MCL = .     (3.257)  

ering the time periodicity = 3 years  (or MOON,-S(T = 8 years) of t
combi   Sun-Mo

years354348÷
Consid З) he maximal  1ЗMOON,-S )(T 2

ned energy gravitational influence on the Earth of the system on in the first (or second) 
approximation, the time periodicity  )(T 2ЗV, = 8 years  (or  )(T 1ЗV, = 3 years) of the maximal energy 
gravitational influences on the Earth of the Venus in the second (or first) approximation, the time periodicity 

2ЗJ, )(T =12 years  (in the second approximation) of the maximal energy gravitational influences on the Earth 
Jupiter and the Sun owing to the gravitational interactions of the Sun with the Jupiter, the time 

periodicity  )(T 1ЗSAT, = 29 years (in the first approximation) of the maximal energy gravitational influences 
on the Earth the Sun owing to the gravitational interactions of the Sun with the Saturn, we obtained 
[Simonenko, 2012] from formula (3.239) (for  1,o

of the 

=l  1,2 =l  ,04 =l   ,15 =l  1,6 =l  ,07 =l  08 =l ) (as the 
lower  boundary of the founded range (3.256) tectonic, 
volcanic and climatic periodicity (of the Earth’s periodic global seismotectonic and volcanic  activity and the 
global climate variability) 

[Simonenko, 2012]) the fundamental global seismo
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MCLM           == fclim1,ftec, TT .CL }29,12,3,8.{..}29,12,8,3.{. = = 3×2×4×29 years = 696 years    (3.256a) 

determined by the combined predominant non-stationary energy gravitational influences on the Earth of the 

e (3.256) of the fundamental global seismotectonic, volcanic and climatic 
period

,

system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with 

the Jupiter and the Saturn.  

The established rang
icities [Simonenko, 2012] contains the experimental time periodicity 704 years [Abramov, 1997] of 

the global seismotectonic activity. The established range (3.257) of the fundamental global seismotectonic, 
volcanic and climatic periodicities [Simonenko, 2012] contains the experimental time periodicity 352 years 
[Abramov, 1997] of the global seismotectonic activity. 

We deduce from formula (3.239) (for 1o =l   1,2 =l  ,14 =l   ,15 =l  1,6 =l  ,07 =l ) 08 =l  the 
fundam  climatic periodicity (determined by the  comental global seismotectonic, volcanic and bined 
predominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, 
the Mars, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the 
Saturn)       

       === fenergy,fclim1,ftec, TTT years59453}59,12,15,3,3.{.. ×××=MCL = years3540 ,      (3.258)  
which  transforms into the classical Babylonian “sar” of under the fina ractical trayears3600  l p nsformation 

6059 →  for the time periodicity years.59)(T 2ЗSAT, =   

nsidering the time periCo odicity or = 8 years  of the maximal combined energy 
gravit ystem  Sun

arth of

2ЗMOON,-S )(T
ational influence on the Earth of the s -Moon in the second  approximation, the time 

periodicity  )(T 2ЗV, = 8 years  of the maximal energy gravitational influences on the Earth of the Venus in 

the second ation, the time periodicity )(T =12 years  (in the second approximation) of the 
maximal energy gravitational influences on the E  the Jupiter and the Sun owing to the gravitational 
interactions of the Sun with the Jupiter, the time periodicity  )(T 1ЗSAT, = 29 years (in the first approximation) 
of the maximal energy gravitational influences on the Earth the ing to the gravitational interactions of 
the Sun with the Saturn, and the time periodicity  )(T 1ЗMARS, = 15 years of the maximal of the maximal 
energy gravitational influences on the Earth of the M first approximation), we obtain from formula 
(3.239) (for  1,o =l  1,2 =l  ,14 =l   ,15 =l   1,6

approxim 2ЗJ,

Sun ow

ars (in the 
=l   ,07 =l   08 =l )  the fundamental global seismotectonic, 

volcanic and lo smotectonic and volcanic  activity and the 
global climate variability) 
        

climatic periodicity (of the Earth’s periodic g bal sei

=== TTT energyclim1tec =}29,12,15,8,8.{.. MCL 2×4×3×5×29 years = 5 × 696 years  =  3480 years  
a)  

 in the expression  (of (3.258)) produces  
the fo ismotectonic, volcanic and climatic periodicities:   

                                                                                                                                                                 (3.258
determined by the combined predominant non-stationary energy gravitational influences on the Earth of the 

system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing to the gravitational interactions of  

the Sun with the Jupiter and the Saturn.  

The practical transformation 59 → 60 }59,12,15,3,3.{.. MCL
llowing fundamental global se      
                                  years60}60,12,15,3,3.{..TT fclim1,ftec, === MCL                                     (3.259)  

and 
                               years60}60,12,15,8,3.{..5.0TT fclim2,ftec, =⋅== MCL                                 (3.260)  

reveal nd D.M. Sonechkin [Monin and Sonechkin, 2005] expe
seismotectonic, 

volcan   comb

ed by A.S. Monin a rimentally. 
We deduce also (under the final transformation 6059 → ) the fundamental global 
ic and climatic periodicity (determined by the ined predominant non-stationary energy 

gravitational influences on the Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun 
owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn)       
                                  years120}60,12,15,8,3.{..TTT fenergy,fclim1,ftec, ==== MCL ,                            (3.261)  

ement with the mean periodicity of recurrence of the strongewhich is in good agre st earthquakes in different 
regions (especially for Japan and Peru) of the seismic zone of the Pacific Ring [Vikulin, 2003].  
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3.8.2. The evidence of the founded ranges of the fundamental global seismotectonic  

 
 
 

and  volcanic time periodicities years708696TT fclim1,ftec, ÷==   and 

  years354348T ÷==   s of the T fclim2,ftec, based on the statistical analysi  
 historical eruptions of the Katla and the Hekla volcanic systems in Iceland 

3.8.2.1. The generalized formulation of the weak law of large numbers 
 

We shall use the generalization [Simonenko, 2005] of the classical special formulation [Nicolis and 
Prigog

.., …. c ce

 
 

ine, 1989] of the weak law of large numbers for the statistical analysis of the  historical eruptions of 
the Katla and the Hekla volcanic systems. The generalization [Simonenko, 2005]  of the classical special 
formulation [Nicolis and Prigogine, 1989] of the weak law of large numbers takes into account the 

coefficients of correlations ( ) 0x,xρ ≠  between the random variables x  and x  of the infinite set of 

random variables ,..x,x haracterized by the same varian  2σ = )
ki i k

n21 x ( 2a−  and  the same 

statistical mean 

ix

ix=a  variables …. . It was  proved  [ onenko, 2005]  
mathematically that the limit of  probability  

                                                            

 of the random Simn21 x,....,x,x

( ) 1ε
n

x...xxPrlim n21
n

=
⎭
⎬
⎫

⎩
⎨
⎧

<−+++
∞→

а                                         (3.262)  

is satisfied (for any ) if the following condition:           0>ε
                                                                     0)x,xρ(

n
σ n2

∑lim
ki1;ki, ki2

=
≠=∞→

                                                 (3.263)  

is satisfied for the coefficients of correlations  

n of the various possible pair combinations  of 

differe  the dates (t

n

)x,ρ(x ki . 

Let us formulate the conditions of creatio ))(t,)((t i1i2

nt previous i1 )(t   and subsequent i2 )(t  dates of real volcanic eruptions.  We take )  

and i2 )(t  from the experimental sequen N21k T,...,T,T}T
 i1

ce { =   of different dates of real vol  

eruptions, where T  is the initial date of real v the final date of real volcanic eruption. 

We form the various possible pair combinations ))(t,)((t  1, 2, 3, …, n ) of two dates  )(t  and  

i2 )(t  taken from the experimental sequence  NT,...,{T

canic

olcanic eruption, 

(i=

T,T}

1 NT  

i1i2 i1

21k =   of different dates of real volcanic 
ons To obtain the experimental evidence of the founded ranges of the fundamental global volcanic 

periodicities years708696TT fclim1,ftec, ÷
erupti

== , we take into account all possible pair combinations 

)(t,)((t ns  

                                         

)i1i2  satisfying the imposed conditio

                       years,88696-)(t-)(t i2 i1 ≤                                            (3.264)  

                                                               years.88708-)(t-)(t i1i2 ≤                                              (3.265)  

 pair combinations 

under e random var =
Considering the various possible )  of two dates  )(t  and  )(t  )(t,)((t i1i2 i1 i2

imposed conditions (3.264)  and (3.265), we obtain  th iable -)(tt)(∆ x ≡  
characterizing by the mean value  

                                                          

i1i2ii )(t

t∆  = 
n
1

i

n

1i
t)(∆∑

=

,                                                           (3.266)  

which must be very close to the  statistical mean ii t)(∆x ≡=a  for sufficiently large number n according to 
the proved  [Simonenko, 2005]  formulation (3.262)  if the condition (3.263)  is satisfied for the coefficients 
of correlations  . We assume that the condition (3.263) is satisfied.  )x,ρ(x ki
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              atla volcano 

The real dates of Katla volcano eruptions are given by the following experimental sequence 
hordarson and Larsen, 2007]:  

612, 1625, 1660, 
1721, 

i
[Thordarson and Larse

45) charact

 
 
 
                              3.8.2.2. The statistical analysis of eruptions of K
 

[T

N21k T,...,T,T}{T = = 920, 934, 938, 1179, 1245, 1262, 1357, 1416, 1440, 1500, 1580, 1
1755, 1823, 1860, 1918, 1955, 1999, 2011 AD.  

 Taking into account the mposed condition (3.264), we obtain from this experimental sequence 
n, 2007] the following pair combinations ))(t,)((t i1i2  of two dates  i1 )(t  and  

i2 )(t  (between the Katla volcano eruptions): (2011, 12 erized by t∆ = 12

1262) characterized by t∆ = 12 tt − = 749 years,   (2011, 1357) characterized by t∆ = 12 tt − =654 years,  
(1999, 1245) characterized by t∆ = 12 tt − =754 years,   (1999, 1262) characterized by t∆ = t

tt − = 766 years,  (2011, 

12 t− =737 
  (1999, 1357) characterized by tyears, ∆ = 12 tt − =642 years, (1955, 1179) characterized by 

t∆ = 12 tt − =776 years, (1955, 1245) characterized by t∆ = 12 tt − =710 years, (1955, 1262) characterized 
by t∆ = 12 tt − =693 years, (1918, 1179) characterized by t∆ = 12 tt − =739 years, (1 1245) 
characterized by t∆ = 12 tt − =673 years, (1918, 1262) characterized by t

 918, 
∆ = 12 tt − =656 years, (1860, 

9) cterized by t∆ = 12 tt − =681 years,  (1860, 1245) characterized by t∆ = 12 tt − =615 years, 
(1823, 1179) characterized by t∆ = 12 tt − =644 years, (1721, 938) characterized by t∆ = 12 tt − =783 years, 
(1660, 934) charac iz t∆ = 12 tt − =726 years,  (1660, 938) characterized by = 12 tt − =722 years, 
(1625, 920) characterized by 1t− =705 years, (1625, 934) characterized by = 1 =691 years,  
(1625, 938) characterized by ∆ t 687 years, (1612, 920) characterized by = =692 years,  
(1612, 934) characterized by = =678 years, (1612, 938) characterized by = =674 years, 
(1580, 920) characterized by = =660 years,  (1580, 934) characterized by = =646  years 
and (1580, 938) characterized by 12 t

117  chara

ter ed by  t∆
t∆ = 2t t∆ 2 tt −
t = 12 t− = t∆ 12 tt −
t∆ 12 tt − t∆ 12 tt −
t∆ 12 tt − t∆ 12 tt −

t∆ = t − =642 years. Taking into account of  these n=28 numerical 
values of t∆ , we obtain the mean experimental time periodicity (between the Katla volcano eruptions) 

                                                                
696

t∆  = 
28
1 6785.697t)(∆ i

28

1i
=∑

=

cities 
÷==  [Simonenko, 2012] determined by the combined predominant non-

s on th arth of the system Sun-M

 years,                             (3.267)  

entering into the founded range of the fundamental global seismotectonic and  volcanic time periodi
years708696TT fclim1,ftec,

stationary energy gravitational influence e E oon, the Venus, the Jupiter and 
the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn. 

Taking into account the imposed condition (3.265), we obtain the following pair combinations 
))(t,)((t i1i2  of two dates  i1 )(t  and  i2 )(t  (between the Katla volcano eruptions): (2011, 1245) 

characterized by t∆ = 12 tt − = 766 years,  (2011, 1262) characterized by t∆ = 12 tt − = 749 years,   (2011, 
1357) characterized by t∆ = 12 tt − =654 years,  (1999, 1245) characterized by t∆ = 12 tt − =754 years,   

characterized by 12 tt − = ears,  (1999, 1357) characterized by t∆ = 12 tt(1999, 1262) t∆ = 737 y − =642 
years, (1955, 1179) characterized by t∆ = 12 tt − =776 years, (1955, 1245) characterized by 

t∆ = 12 tt − =710 years, (1955, 1262) characterized by t∆ = 12 tt − =693 years, (1918, 1179) characterized 
by t∆ = 12 tt − =739 years,  (1918, 1245) characterized by t∆ = 12 tt − =673 years (1 262) 
characterized by t∆ = 12 tt − =656 years, (1860, 1179) characterized by t

, 918, 1
∆ = 12 tt − =681 years, (1823, 

9) cterized by t∆ = 12 tt − =644 years, (1721, 938) characterized by t117  chara ∆ = 12 tt − =783 years, (1660, 
934) characterized by t∆ = 12 tt − =726 years,  (1660, 938) characte ed triz  by ∆ = 12 tt − =722 years, (1625, 
920) characterized  1t− =705 years, (1625, 934) characterized by by t∆ = 2t t∆ = =691 years,  (1625, 
938) characterized by ∆ t 687 years, (1612, 920) characterized by 

12 tt −
t = 12 t− = t∆ = 12 tt 692 years,  (1612, − =
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934) characterized by = =678 years, (1612, 938) characterized by t∆ 12 tt − t∆ = =674 years, (1580, 
920) characterized by t = 1 =660 years,  (1580, 934) characterized b

12 tt −
∆ 2 tt − y t∆ = t −
ed y =
er ental t ru ions) 

          

1t =646  years and 
(1580, 938) characteriz  b 12 tt − =642 years. Taking into account of these n= 27 numerical values, 
we obtain the mean exp im ime periodicity (between the Katla volcano e pt

                                          

2

 t∆

 
708

t =∆
27
1 7407.700t)(∆ i

27

1i
=∑

=

c time periodicities 
inant non-

luence on the Earth of the syste

(3.268)  (of the considered erupt

tical  range of the 

years                                             (3.268)  

entering into the founded range of the fundamental global seismotectonic and  volcani
years708696TT ÷==  [Simonenko, 2012] determined by the combined predomfclim1,ftec,

stationary energy gravitational inf s m Sun-Moon, the Venus, the Jupiter and 
the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn. 

The mean value 699.2096 years of the calculated mean experimental time periodicities (3.267) and 
ions of Katla volcano) is very close to the mean value 702 years the founded 

theoretical  range of the fundamental global seismotectonic, volcanic and climatic time periodicities 
years708696TT ftec, ÷==  [Simonenko, 2012]. We can see that the founded theorefclim1,

fundamental global seismotectonic, volcanic and climatic time periodicities years708696TT fclim1,ftec, ÷==  
[Simonenko, 2012] contains the calculated mean experimental time periodicities (3.267) and (3.268)  of the 

volcano [Thordarson and Larsen, 2007]. This agreement confirms the 
established cosmic energy gravitational genesis [Simonenko, 2007] of the 
and climatic activity of the Earth. 
                                       
 
                                      

3.8.2.3. The

considered eruptions of Katla 
global seismotectonic, volcanic 

 statistical analysis of eruptions of Hekla volcano 

The real dates of Hekla volcano eruptions are given by the following experimental sequence 

510, 1554, 1597, 16 0, 1980-1981, 1991, 
000. 

(between the Hekla volcano eruptions): (2000, 1222)  ears,   

 

[Thordarson and Larsen, 2007]: N21k = 1104,  1158, 1206, 1222, 1300, 1341, 1389, 1440, 
36, 1693, 1725, 1766-1768, 1845, 1878, 1913, 1947-1948, 197

T,...,T,T}{T =
1
2

Taking into account the imposed condition (3.264), we obtain from this experimental sequence 
[Thordarson and Larsen, 2007] the following pair combinations ))(t,)((t i1i2  of two dates  i1 )(t  and  

i2 )(t  t∆characterized by = 12 tt − =778 y
(2000, 1300) characterized by t∆ = 12 tt − = 700 years,  (2000, 1341) characterized by t∆ = 12 tt − = 659 
years, (2000, 1389) characterized by t∆ = 12 tt − = 611 years,  (1991, 1222) characterized by t∆ 1t= 2t − = 

years, (1991, 1300) characterized by t769 ∆ = 12 tt − = 691 years, (1991, 1341) characterized by 
t∆ = 12 tt − = 650 years, (1980.5, 1206) characterized by t∆ = 12 tt − =  774.5years,  (1980.5, 1222) 

characterized by t∆ = 12 tt − =  758.5 years, (1980.5, 1300) characterized by t∆ = 12 tt − =6 .5 s, 
(1980.5, 1341) characterized by t∆ = 12 tt − =  6 .5  (1970, 1206) characterized by t∆ = 12 tt

80   year
39  years, − = 764  

rs, , 1222) characterized by t∆ = 12 ttyea  (1970 − = 748 years, (1970, 1300) characterized by t∆ = 12 tt − = 
670 years, (1970, 1341) characterized by t∆ = 12 tt − = 629 years, (1947.5 aracterized by 

t∆ = 12 tt − = 741.5 years, (1947.5, 1222) characterized by t
, 1206) ch

∆ = 12 tt − =  725.5 years 19 1300) 
characterized by t∆ = 12 tt − = 647.5  rs , 1158) characterized by t

, ( 47.5, 
yea , (1913 ∆ = 12 tt − =755 y rs, , 

1206) characterized by t∆ = 12 tt − = 707 years, ( 1222) characterized by t∆ = 12 tt − = 691 years, 
13 ) characterized by t∆ = 12 tt − = 613 years, (1878, 1104) characterized by t∆ = 12 tt

ea   (1913
1913, 

(19 , 1300 − = 774 
years,  (1878, 1158) characterized by t∆ = 12 tt − = 720 years, (1878, 1206) characterized by t∆ = 12 tt − = 
672 years, (1878, 1222) characterized by t∆ = 12 tt − = 656 years, (1845, 1104) characterized by 

t∆ = 12 tt − = 741 years, (1845, 1158) characterized by t∆ = 12 tt − = 687 years, (1845, 1206) characterized 
by t∆ = 12 tt − = 639 years, (1845, 1222) characterized by t∆ = 12 tt − = 623 years, ( 67 ) 17 , 1104
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76 1158)characterized by t∆ = 12 tt − = 663 years and  (1 7,  characterized by t∆ = 12 tt − = 609 years.  
g into account of  these n=32 numerical va s  t∆Takin lue of , we obtain the mean experimental time 

peri cit een the Hekla volcano eruptions) 

                                                  

odi y (betw

696
t∆ =

32 1i

1 328.693t)(∆ i

32

=∑ years,                                   (3
=

.269)  

and  volcanic tim

              

which is near the lower boundary (696 years) of the founded range of the fundamental global seismotectonic 
years708696TT fclim1,ftec, ÷==e periodicities  [Simonenko, 2012] determined by the 

ionary  gravitational influ

posed condition (3.265), we 

combined predominant non-stat  energy ences on the Earth of the system Sun-Moon, 
the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the 
Saturn. 

Taking into account the im obtain the following pair combinations 
))(t,)((t i1i2  of two dates  i1 )(t  and  i2 )(t  (between the Hekla volcano eruptions): (2000, 1222) 

characterized by t∆ = tt − =778 years,   (2000, 1300) characterized by t∆ = tt − = 700 years,  (2000, 12 12

1341) characterized by t∆ = 12 tt − = 659 years, (1991, 1222) characterized by t∆ = 12 tt − = 769 years, 
 12 tt − = years, (1991, 1341) characterized by t∆ = 12 tt(1991, 1300) characterized by t∆ =  691 − = 650 

years, (1980.5, 1206)  characterized by t∆ = 12 tt − =  774.5years,  (1980.5, 1222) characterized by 
t∆ = 12 tt − =  758.5 years, (1980.5, 1300) characterized by t∆ = 12 tt − =680.5  years, (1980.5, 1341) 

characterized by t∆ = 12 tt − =  .5 , (1970, 1206) characterized by t639  years ∆ = 12 tt − = 7   (1970, 
1222) characterized by t∆ = 12 tt − = 748 y rs , 1300) characterized by t∆ = 12 tt − = 670 years, 

70 ) characterized by t∆ = 12 tt − = 629 years, (1947.5, 1206) characterized by t∆ = 12 tt − = 741.5 
years, (1947.5, 1222) characterized by t

64 years, 
ea , (1970

(19 , 1341
∆ = 12 tt − =  725.5 years, (19 .5 0) characterized by 

t∆ = 12 tt − = 647.5  y s, 3, 1158) characterized by t
47 , 130

ear  (191 ∆ = 12 tt − =755 ea (1913, 1206) 
characterized by t∆ = 12 tt − = 7  (1913, 1222) characterized by t

 y rs,  
 70  years, ∆ = 12 tt − = 91  (1878, 

1104) characterized by t∆ = 12 tt − = 774 rs 8, 1158) characterized by t∆ = 12 tt − = 720 years, 
78 ) characterized by t∆ = 12 tt − = 672 years, (1878, 1222) characterized by t∆ = 12 tt

 6  years,
yea ,  (187

(18 , 1206 − = 656 
years, (1845, 1104) characterized by t∆ = 12 tt − = 741 years, (1845, 1158) characterized by t∆ = 12 tt − = 
687 years, (1845, 1206) characterized by t∆ = 12 tt − = 639 years, (1845, 1222) characterized by 

t∆ = 12 tt − = 623 years and (1767, 1104) characterized by t∆ = 12 tt − = 663 years. Taking into account of 
these n=29 numerical values, we obtai he  experimental time periodicity (between the Hekla o 
eruptions [Thordarson and Larsen, 2007]) 

                                        

n t  mean volcan

               
708

t∆ =
29
1 8470t)(∆ i

1i
=∑ 47.1

29

=

yea

 determined by the combined predominant non-
uences n the Earth of the system

lcano) is in  

rs                                           (3.270)  

entering into the founded range of the fundamental global seismotectonic and  volcanic time periodicities 
years708696TT ÷==  [Simonenko, 2012]fclim1,ftec,

stationary energy gravitational infl  o  Sun-Moon, the Venus, the Jupiter and 
the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn. The mean value 
697.5863 years of the calculated mean experimental time periodicities (3.269) and (3.270) (of the considered 

 very good agreement with the mean value 702 years the founded theoretical 
range of the fundamental global seismotectonic, volcanic and climatic time periodicities 

years708696TT fclim1,ftec, ÷==  [Simonenko, 2012].   
The analogous statistical analysis of the  historical eruptions of the Katla and the Hekla volcanic 

systems in Iceland [Thordarson and Larsen, 2007] confirms also the founded range of the fundamental global 
seismotectonic and  volcanic time periodicities  354348TT

eruptions of Hekla vo

fclim2,ftec, ÷==  years  determined by the 
combined predom

damental global seismote

inant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, 
the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the 
Saturn. 

Thus, the founded theoretical  range of the fun ctonic, volcanic and climatic 
time periodicities years708696TT fclim1,ftec, ÷==  [Simonenko, 2012] (determined by the combined 
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ter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn) 
contai

volcano [Thordarson and La

  The cosmic energy gravitational genesis of the predominant short-range time periodicities (7i/6 
years and 6j/5 years determined by small integers i  and  j)  of the Chandler’s  

wobble of the Earth’s pole and sea water and air temperature variations  
  

clim1 ars

predominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, 
the Jupi

ns the calculated mean experimental time periodicities (3.267) and (3.268)  (of the considered 
eruptions of Katla rsen, 2007]), the calculated mean experimental time 
periodicity (3.270)  (of the considered eruptions of Hekla volcano [Thordarson and Larsen, 2007]), the 
experimental time periodicity 704 years [Abramov, 1997] of the global seismotectonic activity of the Earth, 
and the evaluated (based on the wavelet analysis) time periodicity of approximately 700 years [Goncharova, 
Gorbarenko, Shi, Bosin, Fischenko, Zou and Liu, 2012] characterizing the regional climate variability of the 
Japan Sea. This agreement confirms the established cosmic energy gravitational genesis [Simonenko, 2007] 
of the global seismotectonic, volcanic and climatic activity of the Earth. 
         
 
 
 

 
3.8.3.

 
3.8.3.1.  The cosmic energy gravitational genesis of the predominant time periodicities  

 and   years2.1yr5/6)T( 1ch,1 =≈=   ...ye1.1666666.yr 6/7)T(T 2chclim1,2T  =≈=  
 of the Chandler’s wobble of the Earth’s pole and the global climate variability 

 induced by  the combined non-stationary energy gravitational influence  

The fu ed in the 
monographs esis of the 
Chandler’s varia th’s pole) was 
explained [Simonenko, 2 ry energy gravitational 
influe

on the Earth of the Venus, the Mercury and the Moon 
 

ntndamentals of the solution of the Chandler’s problem [Chandler, 1892] are prese
 [S enimonenko, 2007; 2008; 2009; 2010]. The cosmic energy gravitational g

tions of th  of the Eare latitude of the Earth (related with the Chandler’s wobble
007; 2008; 2009; 2010] by the combined non-stationa

nce of the Sun, the Venus, the Mercury, the Moon and the Jupiter. The cosmic energy gravitational 
genesis of the Chandler’s wobble of the Earth’s pole was founded [Simonenko, 2007; 2008; 2009; 2010] 
based on the generalized differential formulation (1.43) of the first law of thermodynamics for the Earth 
subjected to the non-stationary energy gravitational influences of the Mercury, the Venus, the Moon and the 
Jupiter. We founded [Simonenko, 2009; 2010] the total average first approximate range of the time 
periodicities (of the Chandler’s wobble of the Earth’s pole): 
                                          yr2245.11.1088= days 447.25 405T

1MOOM V,M, ÷÷=                          (3.271)  

induced by the combined non-stationary energy gravitational influence of the  Venus, the Mercury and the 
Moon on the Earth. We obtained [Simonenko, 2011] that the average of the range (3.271) is given by the 
value  

yr,              
6

yr
12

yr166666667.1)25.3652/()25.447(405 ===⋅+        (3.272)  

which gives the following previously established values: the mean experimental period of 14/12 yr = 14 
months

714

 (Chandler, 1892) of the Chandler’s wobble of the Earth’s pole, and the time periodicity of 7 yr 
 of the established intensification  of the Chandler’s wobble of the Earth’s pole. 

nko, 2009; 2010] showed that the time periodicities  
[Simonenko, 2009; 2010]
The analysis [Simone

            yr,6))T((T 1chMOON,3V,M, ≈  yr7))T((T 2chMOON,3V,M, ≈                                   (3.273)  
are related with the established intensification  of the Chandler’s wobble of the Earth’s pole due to the 
combined non-stationary energy gravitational influence of the  Venus, the Mercury and the Moon on the 
Earth. It was founded [Simonenko, 2011] that the time periodicities (3.273) correspond to the following time 
periodicities  
                                yr,2.15/6)T( 1ch =≈  ...yr 1.1666666.yr 6/7)T( 2ch =≈                              (3.274)  
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characterizing the main maxima of the calculated [Simonenko, 2011] frequency spectra (f)S x and (f)S y  of 
the document x and y   of t
Earth’s pole. 

 
Fig. 17. The calculated [Simonenko, 2011] frequency spectra (a) and  (b) of the documented 
[Kotlyar and Kim,  1994] variations of the experimental coordinates  and   of the Earth’s pole during  
1897-1969 AD 

7 

D) demonstrate the main maxima for )T( 1ch

(f)Sx  (f)S y

x y

 
The calculated [Simonenko, 2011] frequency spectra (f)Sx  (a) and (f)S y  (b)  (presented on Fig. 1

for 1897-1969 A 2.15/6 =≈  y r. r and 1 y
The calculated [Simonenko, 2011] frequency spectra (a) and  (b) (presented on Fig. 18 

for 1897-1989 AD) demonstrate the main maxima for 2.1
(f)S x  (f)S y

5/6)T( 1ch =≈  yr and 1 yr. 
(f)  (b)  (presented on Fig. 19 The calculated [Simonenko, 2011] frequency spectra S

onstrate the main maxima for  

(f)Sx  (a) and 
for 1969-1989 AD ) dem

y

...1.1666666.yr 6/7)T( 2ch =≈  yr and 1 yr. 
The calculated [Simonenko, 2011] frequency sp d (f)S  (b)  ectra (a) an (presented on Fig. 20 

for 19 1ch

 (f)Sx  y

69-2010  AD) demonstrate the main maxima for 2.1)T( 5/6 =≈  and 1
eory [Simonenko, 2007; 2008; 2009; 2010] of the 

global fa ed wi
oduced by the periodic tectonic-volcanic activization 

accom
 sam

yr  yr. 
According to the thermohydrogravidynamic th
 climate evolution (taking into account the cosmic G( ctor relat th the atmospheric-oceanic 

warming as a consequence of the greenhouse effect pr
b) -

panied by increased output of the atmospheric greenhouse gases) induced by the cosmic non-
stationary energy gravitational influences on the Earth,  the e time periodicities 
       yr,2.15/6)T(T 1chclim1,1 =≈=

 ..yr 1.1666666.yr 6/7)T(T 2chclim1,2 =≈=                 (3.275)  
must  characterize the global climate variability induced by the combined non-stationary energy gravitational 
influence of the Venus, the Mercury and the Moon on the Earth.  
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Fig. 18. The calculated [Simonenko, 2011] frequency spectra  (a) and  (b) of the documented 
[Kotlyar and Kim,  1994] variations of the experimental coordinates  and   of the Earth’s pole during  

(f)Sx (f)S y

x y
1897-1989 AD 
 
 

 
Fig. 19. The calculated [Simonenko, 2011] frequency spectra  (a) and  (b) of the documented 
[Kotlyar and Kim,  1994] variations of the experimental coordinates  and   of the Earth’s pole during  

(f)Sx (f)S y

x y
1969-1989 AD 

 



 
 
Fig. 20. The calculated [Simonenko, 2011] frequency spectra  (a) and  (b) of the documented 
[Earth Orientation Centre data] variations of the experimental coordinates  and   of the Earth’s pole 
during 1969-2010  AD 

(f)Sx (f)S y

x y

 
  To prove this deduction of the thermohydrogravidynamic theory [Simonenko, 2007; 2008; 2009; 
2010], we present in Subsection 3.8.3.2 the combined analysis of the Chandler’s wobble of the Earth’s pole 
[Simonenko,  2011] and the variations of sea water and air temperature for the costal station Possyet of the 
Japan Sea [Simonenko, Gayko and Sereda, 2012]. 

 
 
 

3.8.3.2. The combined analysis of the Chandler’s wobble of the Earth’s pole and the variations of sea 
water and air temperature during 1969-2010 AD for the costal station Possyet of the Japan Sea 

  
Let us fulfil the combined analysis of the Chandler’s wobble of the Earth’s pole [Simonenko,  2011] 

and the variations [Simonenko, Gayko and Sereda, 2012] of sea water and air temperature during 1969-2010 
AD for the costal station Possyet of the Japan Sea. We see that the calculated [Simonenko, Gayko and 
Sereda, 2012] spectra  and   of the sea water temperature variations (Fig. 21a) and the air 
temperature variations (Fig. 21b) have the coincided and nearly coincided local maxima for the following 
predominant experimental time periodicities: 0.9999 years (for the sea water and air temperature variations), 
1.4999 years (for the sea water temperature variations) and 1.49995 years (for the air  temperature 
variations), 2.3332 years (for the sea water temperature variations) and 2.333 years (for the air temperature 
variations), 3.2306 years (for the sea water temperature variations) and 3.2307 years (for the air temperature 
variations), and 8.3997 years (for the sea water and air temperature variations).  

(f)S WT, (f)S AT,

 The calculated spectrum  (presented on Fig. 21a for the time range 1969-2010 AD) of 

variations of sea water temperature demonstrates the predominant experimental time periodicities  
which are in a very good agreement with the following periodicities 

(f)S WT,

,T iexp,W,

                                          18,,42,1,iyr,i7/6yearsi7/6)i(TT 2chiW,2, =≡==
                     (3.276)  

i.e.,  the predominant experimental time periodicities  of variations of sea water approximately equal 
to 

iexp,W,T

                                  
,yri7/6)i(TTT 2chiW,2,iexp,W, ==≈

 
18.,42,1,i =

                     (3.277)  
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Fig. 21.  The calculated spectrum   (a) of variations of sea water during 1969-2010 for the costal 

station Possyet of the Japan Sea [Simonenko, Gayko and Sereda, 2012].  The calculated spectrum   
(b) of variations of air temperature during 1969-2010 AD for the costal station Possyet of the Japan Sea 
[Simonenko, Gayko and Sereda, 2012] 

(f)S WT,

(f)S AT,

 
                                                                                                                                     

                                                                                                                                                           Table 3a 
The predominant experimental time periodicities  of variations of the sea water temperature (during 
1969-2010 AD for the costal station Possyet of the Japan Sea [Simonenko, Gayko and Sereda, 2012]) and the 
time periodicities   for i=1, 2, 4, 18  

iexp,W,T

yri7/6)i(TT 2chiW,2, ==
 

 I 1 2 4 18 

iW,2,T
 in yr 

1.1666… 2.333… 4.666… 21 

iexp,W,T
 in yr 

1.1666 2.3332 4.666 20.999 

 
  

Table 3a shows a very good agreement between the predominant experimental time periodicities 
 of variations of the sea water temperature (during 1969-2010 AD for the costal station Possyet of 

the Japan Sea) and the time periodicities 
iexp,W,T

2chiW,2, )i(TT =  for i=1, 2, 4, 18. The predominant experimental 

time periodicity   is in a very good agreement with the periodicity  

 obtained from the formula (3.276) for the integer i=1. The 

predominant experimental time periodicity  

yr1666.1T exp,1W, =
yr 1.1666...yr6/7)(TT 2chW,2,1 ===

yr3332.2T exp,2W, =
 is in a very good agreement with the 

periodicity   obtained from the formula (3.276) for the integer i=2. 

The predominant experimental time periodicity  

2.333...yryr3/7)(T2T 2chW,2,2 ===

yr666.4T exp,4W, =
 is in a very good agreement with the 

periodicity   obtained from the formula (3.276) for the integer 

i=4. The predominant experimental time periodicity  

yr .666...4yr3/14)(T4T 2chW,2,4 ===

yr999.20T exp,18W, =
 is in a very good agreement 

with the periodicity  yr21)(T18T 2chW,2,18 ==  obtained from formula the (3.276) for the integer i=18. 

The calculated spectrum  (presented on Fig. 21a for the time range 1969-2010 AD) of 

variations of sea water temperature demonstrates the predominant experimental time periodicities  
which are in a very good agreement with the following periodicities 

(f)S WT,

,T jexp,W,



                                                                7,1,jyr,j6/5)j(TT 1chjW,1, ===
                                   (3.278)  

i.e., we have  the following relations for the  sea water  

                                                     
7.1,jyr,j6/5)j(TTT 1chjW,1,jexp,W, ===≈

                            (3.279)  
 
 
                                                                                                                                                            Table 3b  
The predominant experimental time periodicities  of variations of the sea water temperature (during 
1969-2010 AD for the costal station Possyet of the Japan Sea [Simonenko, Gayko and Sereda, 2012]) and the 
time periodicities 

jexp,W,T

71,jyr,j6/5)j(TT 1chjW,1, ===   
 

       j 1 7 

jW,1,T
 in yr 

1.2 8.4 

jexp,W,T
 in yr 

1.2352 8.3997 

 
Table 3b shows a very good agreement between the predominant experimental time periodicities 

  of variations of the sea water temperature (during 1969-2010 AD for the costal station Possyet of 

the Japan Sea) and the time periodicities 

jexp,W,T
yrj6/5)j(TT 1chjW,1, ==  for j = 1, 7. The predominant 

experimental time periodicity   is in a very good agreement with the periodicity  

 obtained from the formula (3.278) for the integer j=1. The predominant 

experimental time periodicity   is in a very good agreement with the periodicity  

 obtained from the formula (3.278) for the integer j = 7. 

yr2352.1T exp,1W, =

yr1.2)(TT 1chW,1,1 ==

yr3997.8T exp,7W, =
yr4.8)(T7T 1chW,1,7 ==

 

                                                                                                                                                        Table 4a  
The predominant experimental time periodicities  of variations of air temperature (during 1969-2010 
AD for the costal station Possyet of the Japan Sea [Simonenko, Gayko and Sereda, 2012]) and the time 
periodicities  for i=1, 2, 12  

iexp,A,T

yri7/6 )i(TT 2chiA,2, ==
     

        I 1 2 12 
iA,2,T  in yr 

1.1666… 2.333… 14 

iexp,A,T
 in yr 

1.1351 2.3332 13.9995 

 
The calculated spectrum  (presented on Fig. 21b for the time range 1969-2010 AD) of 

variations of the air temperature demonstrates the predominant experimental time periodicities 
which are in a very good agreement with the following periodicities 

(f)S AT,

,T iexp,A,

                                                          12,2,1,iyr,i7/6)i(TT 2chiA,2, ===                                   (3.280)  
i.e., we have  the following relations for the air  

                                                  
12.2,1,i,yri7/6)i(TTT 2chiA,2,iexp,A, ===≈

                         (3.281)  
Table 4a shows a very good agreement between the predominant experimental time periodicities 

 of variations of the air temperature (during 1969-2010 AD for the costal station Possyet of the 

Japan Sea) and the time periodicities 

iexp,A,T
yri7/6 )i(TT 2chiA,2, ==  for i=1, 2, 12. The predominant 

experimental time periodicity   is in a very good agreement with the periodicity  yr1351.1T exp,1A, =
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yr 1.1666...yr6/7)(TT 2chA,2,1 ===  obtained from the formula (3.280) for the integer i=1. The 

predominant experimental time periodicity  yr3332.2T exp,2A, =
 is in a very good agreement with the 

periodicity   obtained from the formula (3.280) for the integer i=2. 

The predominant experimental time periodicity  

2.333...yryr3/7)(T2T 2chA,2,2 ===

yr9995.13T exp,12A, =
 is in a very good agreement with 

the periodicity   obtained from the formula (3.280) for the integer i = 12.  yr14)(T12T 2chA,2,12 ==
 

                                                                                                                                                        Table 4b  
The predominant experimental time periodicities  of variations of the air temperature (during 1969-
2010 AD for the costal station Possyet of the Japan Sea [Simonenko, Gayko and Sereda, 2012]) and the time 
periodicities    

jexp,A,T

7 5, 1,jyr,j6/5)j(TT 1chjA,1, ===
 

         J 1 5 7 

jA,1,T
 in yr 

1.2 6 8.4 

jexp,A,T
 in yr 

1.1999 5.9998 8.3997 

 
 

The calculated spectrum  (presented on Fig. 21b for the time range 1969-2010 AD) of 

variations of the air temperature demonstrates the predominant experimental time periodicities  
which are in a very good agreement with the following periodicities 

(f)S AT,

,T jexp,A,

                                                          7, 5, 1,jyr,j6/5)j(TT 1chjA,1, ===
                                   (3.282)  

i.e., we have  the following relations for the air   

                                                  
7.,51,jyr,j6/5)j(TTT 1chjA,1,jexp,A, ===≈

                             (3.283)  
Table 4b shows a very good agreement between the predominant experimental time periodicities  of 
variations of the air temperature (during 1969-2010 AD for the costal station Possyet of the Japan Sea) and 
the time periodicities  for j=1, 5, 7. The predominant experimental time 

periodicity   is in a very good agreement with the periodicity  

 obtained from the formula (3.282) for the integer j=1. The predominant 

experimental time periodicity   is in a very good agreement with the periodicity  

 obtained from the formula (3.282) for the integer j=5. The predominant 

experimental time periodicity   is in a very good agreement with the periodicity  

 obtained from the formula (3.282) for the integer j=7. 

jexp,A,T

yr j6/5)j(TT 1chjA,1, ==

yr1999.1T exp,1A, =

yr1.2)(TT 1chA,1,1 ==

yr9998.5T exp,5A, =

yr6)(T5T 1chA,1,5 ==

yr3997.8T exp,7A, =
yr4.8)(T7T 1chA,1,7 ==

The combined Fig. 22 demonstrates the calculated [Simonenko, 2011] frequency spectra  (a) 
and  (b) of the documented [Earth Orientation Centre data] variations of the experimental coordinates  

and   of the Earth’s pole during 1969-2010  AD. The combined Fig. 22 demonstrates also the calculated 
spectrum   (c) of variations of sea water during 1969-2010 AD for the costal station Possyet of the 
Japan Sea [Simonenko, Gayko and Sereda, 2012].  The combined Fig. 22 demonstrates also the calculated 
spectrum   (d) of variations of air temperature during 1969-2010 AD for the costal station Possyet of 
the Japan Sea [Simonenko, Gayko and Sereda, 2012]. The calculated [Simonenko, 2011] frequency spectra 

 (a),  (b),   (c) and   (d) have the same slope of   demonstrating the single 
cosmic energy gravitational genesis of the Chandler’s wobble of the Earth’s poll and sea water and air 
temperature variations for the costal station Possyet of the Japan Sea. 

(f)S x

(f)S y

x y
(f)S WT,

(f)S AT,

(f)S x (f)S y (f)S WT, (f)S AT, 2-



 
 

 
 
Fig. 22. The calculated [Simonenko, 2011] frequency spectra (a) and  (b) of the documented 
[Earth Orientation Centre data] variations of the experimental coordinates  and   of the Earth’s pole 
during 1969-2010  AD. The calculated spectrum   (c) of variations of sea water during 1969-2010 
AD for the costal station Possyet of the Japan Sea [Simonenko, Gayko and Sereda, 2012].  The calculated 
spectrum   (d) of variations of air temperature during 1969-2010 AD for the costal station Possyet of 
the Japan Sea [Simonenko, Gayko and Sereda, 2012] 

(f)S x (f)S y

x y
(f)S WT,

(f)S AT,

 
Thus, the previous theoretical results [Simonenko,  2007, 2008, 2009, 2010], the spectral  studies 

[Simonenko,  2011] of the  Chandler’s wobble of the Earth’s pole, and the spectral analysis [Simonenko, 
Gayko and Sereda, 2012] of the experimental variations of sea water and air temperature (during 1969-2010 
AD for the costal station Possyet of the Japan Sea) confirm the cosmic energy gravitational genesis of the 
predominant short-range periodicities (7i/6 yr and 6j/5 yr determined by small integers i and j) of the 
Chandler’s wobble of the Earth’s pole and sea water and air temperature variations for the costal station 
Possyet of the Japan Sea. 
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3.8.4. The evidence of the founded range of the fundamental global periodicities 

 (of the global seismotectonic and volcanic  yr708696TT fclim1,ftec, ÷==
activities and the climate variability of the Earth) obtained from the established 

  links between the great natural cataclysms in the ancient history of humankind from  the final  
collapse of the ancient Egyptian Kingdom  and the biblical Flood to the increase of the global 

seismicity and the global volcanic activity in the beginning of the 20th century  
and the modern  increase of the global seismicity and the volcanic activity in the end of the 20th century 

and in the beginning of the 21st century  
 

 
We present in Subsection 3.8.4 the evidence of the founded [Simonenko, 2012] range of the 

fundamental global periodicities yr708696TT fclim1,ftec, ÷==  (of the global seismotectonic and volcanic 
activities and the climate variability of the Earth) based on the established links between the great natural 
cataclysms in the ancient history of humankind from  the final collapse of the ancient Egyptian Kingdom  
and the biblical Flood to the increase of the global seismicity and the global volcanic activity in the 
beginning of the 20th century [Richter, 1969] and the modern  increase of the global seismicity and the 
volcanic activity in the end of the 20th century [Abramov, 1997] and in the beginning of the 21st century 
[Simonenko, 2007; 2009; 2010]. 

 
 

3.8.4.1. The great natural cataclysms in the history of humankind from the final 
collapse of the ancient Egyptian Kingdom  (near 2190 BC) and  

the biblical Flood (occurred in 2104 BC according to the orthodox  
Jewish and Christian biblical chronology) 

 
We have the documented time 63 BC of “the greatest earthquake ever experienced” [Cassius Dio 

Cocceianus, Dio's Roman history] destroyed many cities of the ancient Pontus located in Asia Minor. The 
ancient Minoan empire declined as a consequence of the great Minoan volcanic eruptions at islands Thera 
[Bolt et al., 1978] and Crete [Marinatos, 1939]. The “conventionally accepted” [LaMarche and Hirschboeck, 
1984; p. 126] date of 1500 1450 BC of the volcanic eruption at Thera (Santorini) is based on the 
archaeological evidence [Lamb, 1977]. Archaeologists [Sivertsen, 2009] and geophysicists [Bolt et al., 1978] 
placed usually the Minoan volcanic eruption at island Thera (Santorini) near 1500 BC. This volcanic 
eruption had the global planetary evidences revealed worldwide [LaMoreaux, 1995]. Especially, Stanley and 
Sheng reported [Stanley and Sheng, 1986] the evidence for the presence of ash ejected from the explosion of 
Santorini in sediment cores recovered in the eastern Nile Delta of Egypt. Weisbued [Weisbued, 1985] 
pointed out that some biblical scholars have suggested that the Israelites’ exodus from Egypt took place a 
date closer to 1450 BC (i.e., near the date 1450 BC of the last major eruption of Thera (Santorini) 
[LaMoreaux, 1995]), whereas LaMoreaux  [LaMoreaux, 1995; p. 174] dated it to about 1440 BC, while 
others have maintained  that the exodus took place around 1200 BC.  

÷

Despite the global planetary consequences [LaMoreaux, 1995] of the great Minoan volcanic eruption, 
the exact date of the eruption has not been determined. Marinatos  [Marinatos, 1939] dated the great Minoan 
volcanic eruption to about 1400 BC, whereas Hammer et al. concluded [Hammer et al., 1987] that the 
eruption of Thera occurred in the range 1665 ÷1625 BC. The eruption catalogue of Simkin et al. [Simkin et 
al., 1981] gives the range of dates 1490 ÷  1450 BC for  Santorini eruption. Betancourt suggested 
[Betancourt, 1987] the range 1700  1640 BC as the most probable date of the eruption of Thera. Running 
the radiocarbon analysis of samples from Akrotini, Hubberten et al. concluded [Hubberten et al., 1989] that 
the catastrophic eruption of Thera occurred most probably in the same range 1700  1640 BC giving “the 
exact time of the great eruption seem to agree a date of about 1670 BC” [Antonopoulos, 1992; p. 158], 
whereas Antonopoulos [Antonopoulos, 1992; p. 155]  dated it to about the range 1600  1500 BC (“1550 
BC plus or minus 50 years”). Friedrich et al. [Friedrich et al., 2006] argued: “Precise and direct dating of the 
Minoan eruption of Santorini (Thera) in Greece, a global Bronze Age time marker, has been made possible 
by the unique find of an olive tree, buried alive in life position by the tephra (pumice and ashes) on 
Santorini”.  

÷

÷

÷

The “radiocarbon wiggle-matching” dating analysis of the olive tree revealed [Friedrich et al., 2006] 
that the eruption  occurred during the range 1627÷1600 BC with 95.4% probability. The authors [Friedrich 



et al., 2006] argued: “It is a century earlier than the date derived from traditional Egyptian chronologies”.  
The studies [LaMarche and Hirschboeck, 1984] of the tree frost rings of the bristlecone pine  in California 
revealed the frost damage (related with the period  of global cooling) between 1628 and 1626 BC. Based on 
revealed frost-ring damage, LaMarche and Hirschboeck dated [LaMarche and Hirschboeck, 1984] tentatively 
the cataclysmic eruption of Santorini (Thera) to 1828÷1626 BC. This  estimate 1828 1626 BC is based on 
the accepted hypothesis “that major eruptions are likely to be closely followed by notable frost events – at 
better than the 99.9% confidence level”. Baillie [Baillie, 1989] stated that an Irish oak minimum-growth 
period is the real evidence of a large volcanic eruption (accompanied by volcanic veil of fine ash and 
aerosols) that began in 1628 BC. LaMoreaux has stated [LaMoreaux, 1995]: “It is believed that this is an 
earlier time when Thera began its period of volcanic activity. This could represent the first of a series of large 
eruptions which left two major caldera that have occurred at Thera. A final large eruption and collapse took 
place in 1450 BC, which agrees with archaeological evidence”. 

÷

Antonopoulos indicated [Antonopoulos, 1992; p. 158] that it is important to remember that the date 
about 1550 BC “is the date of the beginning of the eruption and not of the widespread destruction in Crete”. 
It is very important for subsequent analysis to take into account the additional information related with the 
date about 1550 BC [Antonopoulos, 1992; p. 158]: “It is also the date when the Thera volcano became active 
again after a long period of quiescence and ejected the coarser pumice which form the lowest layer in the 
tephra deposits. The effects of this phase of the eruption were probably confined only to Thera. It did not 
result in the formation of the caldera, but all settlements on the island were obliterated, and all the inhabitants 
were either killed or driven away. Thus, since just a few skeletons and valuables have been found, it seems as 
if the inhabitants had enough warning to collect some of their belongings and evacuate”. 

Finally, LaMoreaux stated [LaMoreaux, 1995]: “The eruptions of Thera (Santorini) between 1628 and 
1450 BC constituted a natural catastrophe unparalleled in all history. The last major eruption in 1450 BC 
destroyed the entire Minoan Fleet at Сrеte at a time when the Minoans dominated the Mediterranean world”. 
LaMoreaux has believed [LaMoreaux, 1995] that “over the period from 1628 to 1450 BC Thera experienced 
a number of very explosive volcanic events”. 

As we can see from the first point of view, the exact date of the eruption of Thera (Santorini) is the 
subject of controversy. We intent to solve this controversy in this Subsection by establishment of the non-
controversial exact dates of the different distinct eruptions of Thera (Santorini). 

It is well known that the ancient Egyptian Kingdom declined near 2190 BC as a consequence of the 
long-lasting catastrophic drought related with the extraordinary decrease of the depth of the Nile. The decline 
of the ancient Egyptian Kingdom coincided with the small ice age in Europe. The recurrence of the next 
catastrophic drought occurred in Egyptian Cairo in 1200 AD during the Arabic conquest of the Egypt.  

According to the orthodox Jewish and Christian biblical chronology [Genesis, 7:11], the Flood 
occurred in the Jewish year 1656 (which is 2104 BC) as a consequence of the rainstorm during the 40 days 
[Genesis, 7:12]. We have the intermediate mean date 2147 BC between the biblical Flood (2104 BC) and the 
final collapse of the ancient Egyptian Kingdom (2190 BC) related with the long-lasting catastrophic drought.   

Reconstructing the ancient history of the humankind in his “Egypt’s Place in Universal History”, Von 
Bunsen [Von Bunsen, 1848, pp. 77-78, 88] revealed the marks of the planetary disaster, related with the 
dramatic change of the landscape of the Central Asia in 10555 BC. Considering the ancient history of the 
humankind in his “Fingerprints of the Gods” [Hancock, 1997], Graham Hancock revealed the Egyptian 
marks of the planetary disaster in 10450 BC. It was suggested [Simonenko, 2009; 2010] that the Bunzen’s 
and Hancock’s estimations are related with the same planetary disaster during the time range 10555 BC  

10450 BC in the ancient history of the humankind. Taking into account the documented times (10555 BC 
[Von Bunzen, 1848] and 10450 BC [Hancock, 1997]), we can evaluate the mean date 10502.5 BC of the 
planetary disaster in the Central Asia and Egypt.  

 ÷

 We get the time duration  10439.5  years  (10502.5 - 63) between  the greatest [Cassius Dio 
Cocceianus, Dio's Roman history] earthquake (63 BC) destroyed the ancient Pontus (located in Asia Minor) 
and the obtained mean date 10502.5 BC  of the planetary disaster in the Central Asia [Von Bunsen, 1848, pp. 
77-78, 88] and Egypt [Hancock, 1997]. The obtained time duration  10439.5  years  is approximately equal 
to the time period  10440 years (3 ×  3480 years) consisting of 3 time periods of 3480 years given by the  
fundamental global seismotectonic, volcanic and climatic periodicity (3.258a) determined by the  combined 
predominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the 
Venus, the Mars, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter 
and the Saturn.  The obtained time duration  10439.5  years  confirms the stated hypothesis  [Ilyichev and 
Cherepanov, 1991, p. 1371] about the recurrence of the super-earthquakes characterized by the average 
approximate time periodicity of 10000 years.  
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history of the humankind are the climatic and geophysical mutually related links of the one evolutionary 
chain determined by the combined cosmic non-stationary energy gravitational influence on the Earth of the 
Sun, the Moon and the planets of the Solar System.  The founded (in Subsection 3.8.1) range of the 
fundamental global seismotectonic, volcanic and climatic periodicities years708696TT fclim1,ftec, ÷==     
(determined by the combined predominant non-stationary energy gravitational influences on the Earth of the 
system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with 
the Jupiter and the Saturn) gives the opportunity to discover one clear viewpoint in the frame of the 
established cosmic geophysics [Simonenko, 2007] towards these planetary catastrophes.  

 
 

3.8.4.2. Linkage of the last major eruption of Thera  (1450 BC) and the 
greatest earthquake destroyed the ancient Pontus (63 BC) 

 
Les us analyze the great natural cataclysms in the ancient history of the humankind to verify the 

established time periodicities (3.256a) and (3.258a) of the Earth’s periodic seismotectonic and volcanic  
activity and the global climate variability of the Earth induced by the combined cosmic non-stationary 
energy gravitational influences of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 
gravitational interactions of  the Sun with the Jupiter and the Saturn. 

Using the time difference 1387 years (1450 - 63) between the date 1450 BC [LaMoreaux, 1995]  of 
last major eruption of Thera and the greatest earthquake in the ancient Pontus (63 BC), we get the ratio: 

                                                ,9928.1
696

1387 
 years 696

years 63)-(1450
==                                        (3.284)  

which shows that we have approximately 2 time periods of 696 years (given by (3.256a)) between these 
cataclysms. Using the classical date 1500 BC [Bolt et al., 1978; Sivertsen, 2009] of the eruption of Thera 
(Santorini), we get the ratio: 

                                                  ,0646.2
696

1437 
years 696

years 63)-(1500
==                                       (3.285)  

which is slightly larger than the previous estimation  (3.284).  
The closeness of the ratios (3.284) and (3.285) to the integer number 2 confirms the founded cosmic 

energy gravitational genesis of the fundamental global seismotectonic, volcanic and climatic periodicity          
(3.256a) [Simonenko, 2012] determined by the combined predominant non-stationary energy gravitational 
influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 
gravitational interactions of  the Sun with the Jupiter and the Saturn. Taking into account that the estimation 
(3.284) is closer to the integer number 2 than the estimation (3.285), we can conclude that the date 1450 BC 
[LaMoreaux, 1995] is more probable than the classical date 1500 BC [Bolt et al., 1978; Sivertsen, 2009] of 
the eruption of Thera (Santorini).  

 
 
 

3.8.4.3. Linkage of the greatest earthquake destroyed the ancient Pontus (63 BC), 
the earthquake destroyed the ancient Greek Temple of Artemis (614 AD ) and 

 the great  frost event (628 AD) related with the atmospheric veil (recorded 
 in Europe in 626 AD) induced by the great unknown volcanic eruption  

 
The ancient Greek city Ephesus (later a major Roman city on the west coast of Asia Minor) was 

destroyed by an earthquake occurred in 614 AD. The Ephesus was famed owing to the Temple of Artemis, 
one of the Seven Wonders of the Ancient World. Using the time difference 677 years (614 + 63) between the  
major earthquake destroyed the Temple of Artemis (614 AD) and the greatest earthquake in the ancient 
Pontus (63 BC), we get the ratio: 

                                               ,9727.0
696
677 

 years 696
years 63)(614

==
+

                                           (3.286)  

which shows that we have approximately 1 time period of 696 years between these earthquakes.  
Using the time difference 689 years (626 + 63) between the greatest earthquake destroyed the ancient 

Pontus (63 BC) and great unknown volcanic eruption (apparently, Rabaul’ [LaMarche and Hirschboeck, 
1984] eruption, whose atmospheric veil was recorded in Europe in 626 AD [Stothers and Rampino, 1983] 



and  resulted to the great frost events  in 628 AD [LaMarche and Hirschboeck, 1984]), we get the ratio: 

                                              ,9899.0
696
689 

 years 696
years 63)(626

==
+

                                            (3.287) 

which shows that we have approximately 1 time period of 696 years (given by (3.256a)) between the greatest 
earthquake destroyed the ancient Pontus (63 BC) and great unknown volcanic eruption.  

The closeness of the ratios (3.286) and (3.287) to the integer number 1 confirms the founded cosmic 
energy gravitational genesis of the fundamental global seismotectonic, volcanic and climatic periodicity 
(3.256a) [Simonenko, 2012] determined by the combined predominant non-stationary energy gravitational 
influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 
gravitational interactions of  the Sun with the Jupiter and the Saturn.  

 
 

3.8.4.4. Linkage of the greatest earthquake destroyed the ancient Pontus (63 BC) 
and the great earthquakes occurred in England (1318 AD and 1343 AD),  

Armenia (1319 AD),  Portugal (1320 AD, 1344 AD and 1356 AD) and Japan (1361 AD) 
 

Using  the time differences  1381 years (1318 + 63) and 1382 years (1318 + 63) between the great 
earthquakes [Vikulin, 2008] occurred in England (1318 AD) and Armenia (1319 AD), respectively,  and the 
greatest earthquake in  the ancient Pontus (63 BC), we get the ratio: 

                                             ,9842.1
696

1381 
 years 696

years 63)(1318
==

+
                                          (3.288)  

which shows that we have approximately 2 time periods of 696 years (given by (3.256a)) between these 
great earthquakes in the ancient Pontus (63 BC) and in England (1318 AD) and Armenia (1319 AD). Using  
the time difference 1406  years (1343 + 63) between the great earthquake in England  (1343 AD) and the 
greatest earthquake of the ancient Pontus (63 BC), we get the ratio: 

                                              ,0201.2
696

1406 
 years 696

years 63)(1343
==

+
                                          (3.289)  

which shows that we have approximately 2 time periods of 696 years (given by (3.256a)) between these 
great earthquakes. 

Using the mean date 1330.5 AD between the great earthquakes in England  (1318 AD and 1343 AD) 
and the greatest earthquake in the ancient Pontus (63 BC), we get the ratio: 

                                           ,0021.2
696

1393.5 
 years 696
years 63) (1330.5

==
+

                                     (3.290)  

which shows that  the great earthquakes in England  (1318 AD and 1330.5 AD) occurred approximately after 
2 time periods of 696 years (given by (3.256a)) from the date 63 BC of the greatest earthquake in the ancient 
Pontus. 

Using the mean date 1332 AD between the great earthquakes in Portugal (1320 AD and 1344 AD)  
and the greatest earthquake in the ancient Pontus (63 BC), we get the ratio: 

                                                 ,0043.2
696

1395 
 years 696

years 63) (1332
==

+
                                     (3.291)  

which shows that  the great earthquakes in Portugal (1320 AD and 1344 AD) occurred approximately after 2 
time periods of 696 years (given by (3.256a)) from the date 63 BC of the greatest earthquake in the ancient 
Pontus. 

Using  the time difference 1424  years (1361 + 63) between the great earthquake in Japan (1361 AD) 
and the greatest earthquake in the ancient Pontus (63 BC), we get the ratio: 

                                                  ,0459.2
696

1424 
 years 696

years 63)(1361
==

+
                                      (3.292)  

which shows that we have approximately 2 time periods of 696 years (given by (3.256a)) between these 
great earthquakes. 

The closeness of the ratios (3.290), (3.291) and (3.292) to the integer number 2 (for England,  Portugal 
and Japan) confirms the founded cosmic energy gravitational genesis of the fundamental global 
seismotectonic, volcanic and climatic periodicity (3.256a) [Simonenko, 2012] determined by the combined 
predominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, 
the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn.  
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3.8.4.5. Linkage of the final collapse of the ancient Egyptian Kingdom 

 (occurred near 2190 BC), the biblical Flood (occurred in 2104 BC  
according to the orthodox Jewish and Christian biblical chronology)  

and the last major  eruption of Thera  (1450 BC) 
 

 We have the intermediate mean date 2147 BC ((2190+2104)/2) between the final collapse of the 
ancient Egyptian Kingdom (near 2190 BC) and the biblical Flood (2104 BC). Using the time difference 697 
years (2147- 1450) between the intermediate mean date 2147 BC and the last major eruption of Thera  (1450 
BC) [LaMoreaux, 1995], we get the corresponding ratio:  

                                                ,0014.1
696
697 

 years 696
years  1450)-(2147

==                                     (3.293)  

which shows that we have approximately 1 time period of 696 years between the intermediate mean date 
2147 BC (between the final collapse of the ancient Egyptian Kingdom (near 2190 BC) and the biblical Flood 
(2104 BC)) and the last major eruption of Thera  (1450 BC). 

Using the classical date 1500 BC [Bolt et al., 1978; Sivertsen, 2009] of the eruption of Thera 
(Santorini), we get the corresponding  ratio: 

                                                   .9295.0
696
647 

years 696
years 1500)-(2147

==                                   (3.294)  

Since the estimation (3.293) is closer to the integer number 1 than the estimation (3.294), we can conclude 
once again that the date 1450 BC [LaMoreaux, 1995] is the more probable date for  the last major eruption of 
Thera  than the classical date 1500 BC [Bolt et al., 1978; Sivertsen, 2009] of the eruption of Thera 
(Santorini).  

The closeness of the ratios (3.293) and (3.294) to the integer number 1  confirms the founded cosmic 
energy gravitational genesis of the fundamental global seismotectonic, volcanic and climatic periodicity 
(3.256a) [Simonenko, 2012] determined by the combined predominant non-stationary energy gravitational 
influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 
gravitational interactions of  the Sun with the Jupiter and the Saturn.  
 
 

3.8.4.6. Linkage of the planetary disasters in the Central Asia (10555 BC) 
and in the ancient Egyptian Kingdom (10450 BC), and the greatest 

earthquake destroyed the ancient Pontus (63 BC) 
 

Using the time duration  10439.5  years  (10502.5 - 63) between  the greatest [Cassius Dio 
Cocceianus, Dio's Roman history] Pontic earthquake (63 BC) in Asia Minor and the obtained mean 
estimation 10502.5 BC ((10555+10450)/2) of the planetary disaster (10555 BC) in the Central Asia [Von 
Bunsen, 1848, pp. 77-78, 88] and the planetary disaster (10450 BC) in ancient Egyptian Kingdom [Hancock, 
1997], we get the ratio   

                                               ,159992.14
696

10439.5 
years 696

years  63)-(10502.5
≈==                                  (3.295) 

confirming the  fundamental global seismotectonic, volcanic and climatic periodicity  (3.256a)  determined 
by the  combined predominant non-stationary energy gravitational influences on the Earth of the system Sun-
Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter 
and the Saturn.  

We get also the ratio   

                          ,3
3480

34803
3480

10440
3480

10439.5 
years 3480

years  63)-(10502.5
=

×
=≈=                            

(3.296)  
confirming the  fundamental global seismotectonic, volcanic and climatic periodicity (3.258a)  determined 
by the  combined predominant non-stationary energy gravitational influences on the Earth of the system Sun-
Moon, the Venus, the Mars, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with 
the Jupiter and the Saturn.  

Thus, the obtained rations (3.284),  (3.285),  (3.286), (3.287), (3.288), (3.289), (3.290), (3.291), 
(3.292), (3.293), (3.294), (3.295) (which can be approximated by various integer numbers for different 



regions of the Earth) confirm the fundamental global seismotectonic, volcanic and climatic periodicity  
(3.256a)  determined by the  combined predominant non-stationary energy gravitational influences on the 
Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of  
the Sun with the Jupiter and the Saturn.  

 
 
 

3.8.4.7. Linkage of the previous great eruptions of Thera (Santorini) 
(between 1628 and 1450 BC), the greatest (in the United 

States in the past 150 years up to 1872) earthquake in Owens Valley, California (1872 AD), the 
eruptions of Santorini in 1866  and 1925 AD and the great eruption of Krakatau in 1883 AD 

 
We present in Subsection 3.8.4.7 the linkage of the previous great eruptions of Thera (Santorini) 

(between 1628 and 1450 BC [LaMoreaux, 1995]), the greatest (in the United States in the past 150 years up 
to 1872) earthquake in Owens Valley, California (1872 AD), the eruptions of Santorini in 1866  and 1925 
AD and the great eruption of Krakatau in 1883 AD. 

Papazachos (see also [Antonopoulos, 1992]) considered [Papazachos, 1989] the largest eruptions 
(accompanied by tsunamis) of the Santorini volcano, which occurred (during the last five centuries) in 1457, 
1573, 1560, 1866 and 1925 AD. We can interpret the eruptions of Santorini in 1866 and 1925 AD and the 
eruption of Krakatau in 1883 AD as terrible manifestation (in the 19th and 20th centuries) of the time 
periodicity of 3480 years = 5 × 696 years   given by (3.258a). The mean date 1874.5 AD between the 
eruptions of Santorini (1866 AD) and Krakatau (1883 AD) is close to the date 1872 AD of the greatest (in 
the United States in the past 150 years up to 1872) earthquake in Owens Valley, California. The date 1925 
AD of the eruption of Santorini is close to the year 1923 AD of the strongest Japanese earthquake in the 
Kanto region (and in  Torbat-e Heydariyeh, Iran;  Sichuan, China; Kamchatka, USSR;  Humbolt County, 
California, USA). 

Using the mean date 1613.5 BC of the obtained range 1627÷1600 BC of the first Santorini’s eruption 
(based on the “radiocarbon wiggle-matching” dating analysis [Friedrich et al., 2006] with 95.4% 
probability), we get the time duration 3479.5 years from this mean date 1613.5 BC and the eruption of 
Santorini in 1866 AD. We get the ratio of the obtained time duration 3479.5 years to the time periodicity of 
3480 years  

                                         ,999856.0
 3480

3479.5 
years 3480

years  1866)(1613.5
==

+
                             (3.297)  

which is very close to the integer  number 1. It means that the eruption of Santorini in 1866 AD  is related 
with the first minor  eruption of Santorini in the obtained range 1627÷1600 BC [Friedrich et al., 2006]. 
Really, considering the eruption of the Santorini in 1866 AD, we can obtain the corresponding date 

of previous eruption related with the founded time periodicity 3480 years given by (3.258a). 
To do this, we have the obvious equation  

 AD)(1866t p

                                                          years, 1866 years 3480  AD)(1866t p =+                       
which gives the following date of the first minor  eruption of  Santorini: 
                                                   BC 1614  years 3480- years 1866 AD)(1866t p ==                        (3.298)  
in agreement with the mean date 1613.5 BC of the obtained range 1627÷1600 BC [Friedrich et al., 2006] of 
the  Santorini’s eruption. 

Antonopoulos associated [Antonopoulos, 1992; p. 166] “the eruption at Thera with the analogous 
Krakatau eruption” occurred in 1883 AD. We can interpret the great eruption of Krakatau in 1883 AD as the 
manifestation of the periodic increase of the global seismicity and volcanic activity related with the founded 
time periodicity 3480 years given by (3.258a).  Really, considering the eruption of Krakatau in 1883 AD, we 
can obtain the time duration 3496.5 years between the great eruption of Krakatau in 1883 AD  and the mean 
date 1613.5 BC of the obtained range 1627÷1600 BC of the first Santorini’s eruption (based on the 
“radiocarbon wiggle-matching” dating analysis [Friedrich et al., 2006]). We get the ratio of the obtained time 
duration 3496.5  years to the time periodicity of 3480 years  

                                          ,0047.1
 3480

3496.5 
years 3480

years  1883)(1613.5
==

+
                                 (3.299)  

which is very close to the integer  number 1, denoting that the eruption of Thera (Santorini) in the obtained 
range 1627 1600 BC [Friedrich et al., 2006] is related with the great eruption of Krakatau in 1883 AD.  ÷
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Using the mean value 1613.5 BC of the obtained range 1627÷1600 BC of the first minor eruption of 
Santorini  [Friedrich et al., 2006], we get the time duration 3485.5 years from this mean date 1613.5 BC and 
the greatest (in the United States in the past 150 years up to 1872) earthquake in Owens Valley, California 
(1872 AD). We get the ratio of the obtained time duration 3485.5 years to the time periodicity of 3480 years  

                                        ,00158.1
 3480

3485.5 
years 3480

years  1872)(1613.5
==

+
                                (3.300)  

which is very close to the integer  number 1. It denotes that the greatest  earthquake in Owens Valley, 
California (1872 AD) is related with the first Santorini’s eruption in the obtained range 1627-1600 BC 
[Friedrich et al., 2006]. The obtained closeness of the estimations (3.296), (3.297) and (3.300) to the integer  
number 1 confirms the founded fundamental global seismotectonic, volcanic and climatic periodicity 
(3.258a)  determined by the  combined predominant non-stationary energy gravitational influences on the 
Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing to the gravitational 
interactions of  the Sun with the Jupiter and the Saturn.  

Considering the greatest (in the United States in the past 150 years up to 1872) earthquake in Owens 
Valley, California (1872 AD), we can obtain (based on the founded time periodicity 3480 years given by 
(3.258a)) the corresponding date of previous maximal planetary seismic and volcanic 
activity from the obvious relation 

   AD)(1872t p

                                                   years, 1872 years 3480  AD)(1872t p =+                       
which gives the following date of previous maximal planetary seismic and volcanic activity: 
                                          BC,  1608  years 3480- years 1872 AD)(1972t p ==                               (3.301)  
entering to the obtained range 1627-1600 BC [Friedrich et al., 2006] of the eruption of Santorini. 

Considering the eruption of Santorini in 1925 AD, we can obtain the corresponding date 
of previous eruption related with the founded time periodicity 3480 years given by (3.258a). 

To do this, we have the obvious relation 
  AD)(1925t p

                                                       years, 1925 years 3480  AD)(1925t p =+                        
which gives the following date of the second minor eruption of Santorini: 
                                            BC  1555  years 3480- years 1925 AD)(1925t p ==                               (3.302)  
in a good agreement with the mean value 1550 BC [Antonopoulos, 1992; p. 155]  of the established range 
1600 1500 BC of the  Santorini’s eruption.  ÷
 
 

3.8.4.8. Linkage of the eruption of Tambora (1815 AD)  
and the Thera (Santorini) eruption in the range 1700÷  1640 BC  

 
We present in Subsection  3.8.4.8 the linkage of the eruption of Tambora (1815 AD) and the Thera 

(Santorini) eruption in the range 1700 ÷  1640 BC [Betancourt, 1987; Habberten et al., 1989]. 
The eruption of Thera (Santorini) was the great natural cataclysm. However, in terms of the erupted 

volume, it ranks smaller [Pyle, 1996] than the eruption of the Tambora occurred in 1815 AD.  Considering 
the eruption of the Tambora occurred (1815 AD), we can obtain (based on the founded time periodicity 3480 
years given by (3.258a)) the corresponding date of the previous great world eruption from the 
obvious relation 

  AD)(1815t p

                                                         years, 1815 years 3480  AD)(1815t p =+                       
which gives the following date of the previous great world eruption: 
                                    BC,  1665  years 1665 -  years 3480- years 1815 AD)(1815t p ===             (3.303)  
which is very close to the mean date 1670 BC of the suggested range  1700 ÷  1640 BC [Betancourt, 1987;  
Hubberten et al., 1989] of the eruption of Thera (Santorini). The date 1665 BC is very close to the average 
date of 1675 BC  [LaMarche and Hirschboeck, 1984] based “on grain from storage jars from the destruction 
level”  [Batancourt and Weinstein, 1976]. This agreement confirms the founded fundamental global 
seismotectonic, volcanic and climatic periodicity (3.258a)  determined by the  combined predominant non-
stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, the Mars, the 
Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn.  
 



 
 
 

3.8.4.9.  Linkage of the increase of the global seismicity (along with the increase of the volcanic 
activity) in the end of the 19th century and in the beginning of the 20th century  

and the eruption of Thera (Santorini) between 1600 and 1500 BC  
 

We present in Subsection 3.8.4.9 the linkage of the increase of the global seismicity (along with the 
increase of the volcanic activity) in the end of the 19th century and in beginning of the 20th century [Richter, 
1969] and the eruption of Thera (Santorini) between 1600 and 1500 BC [Antonopoulos, 1992]. 

The former President of the Seismological Society of America made in 1969 the statement [Richter, 
1969] about the increase of the global seismicity recorded in the range 1896 ÷  1906 AD up to 1969:  

“One notices with some amusement that certain religious groups have picked this rather unfortunate 
time to insist that the number of earthquakes is increasing. In part they are misled by the increasing number 
of small earthquakes that are being catalogued and listed by newer, more sensitive stations throughout the 
world. It is worth remarking that the number of great [that is, 8.0 and over on the Richter scale] earthquakes 
from 1896 to 1906 (about twenty-five) was greater than in any ten-year interval since”. 

The seismologists Seweryn J. Duda and Markus B ith revealed [Duda, 1965; B ith and Duda, 1979] 
the range 1900 ÷1920 AD characterized by the maximal energy release per year for the whole time period 
up to 1977.  The eruption of Santorini occurred in 1925 AD, i.e. near the end of the established  range 1900 

 1920 AD. Considering the range 1900 ÷  1925 AD as the range of the maximal global seismic activity in 
the end of the 19

o
a

o
a

÷
th century and in the beginning of the 20th century (along with the eruption of Santorini in 

1925 AD), we can obtain (based on the founded time periodicity 3480 years given by (3.258a)) the 
corresponding time range of the previous maximal global seismic and volcanic 
activities from the obvious relation 

  AD)1925 (1896t p ÷

                                              years, 1925 1896  years 3480  AD)1925 (1896t p ÷=+÷                      (3.304)  
which gives the following range of the corresponding previous maximal global seismic and volcanic 
activities: 
                                                             BC 1555  1584   AD)1925 (1896t p ÷=÷                                  
(3.305)  
entering to the established range 1600 1500 BC [Antonopoulos, 1992; p. 155]  of eruption of Santorini. 
This agreement  confirms the founded fundamental global seismotectonic, volcanic and climatic periodicity 
(3.258a)  determined by the  combined predominant non-stationary energy gravitational influences on the 
Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing to the gravitational 
interactions of  the Sun with the Jupiter and the Saturn. 

÷

Thus, we have revealed the evident linkages between the different distinct eruptions of the Thera 
(Santorini) dated in the following ranges: 1700÷1640 BC [Betancourt, 1987; Habberten et al., 1989],  
1628 1626 BC [LaMarche and Hirschboeck, 1984], 1627÷1600 BC [Friedrich et al., 2006], 1600÷1500 BC 
[Antonopoulos, 1992], 1628÷1450 BC [LaMoreaux, 1995] and the eruptions of the Tambora (1815 AD), the 
Santorini (1866 AD and 1925 AD) and the Krakatau (1883 AD). Based on the fundamental global 
seismotectonic, volcanic and climatic periodicity (3.258a)  and taking into account the eruptions of the 
Tambora (1815 AD), the Santorini (1866 AD and 1925 AD) and the Krakatau (1883 AD), we have shown 
the real possibility of different distinct eruptions of Thera (Santorini): near 1665 BC (in accordance with the 
range 1700÷1640 BC [Betancourt, 1987; Habberten et al., 1989]), near 1613.5 BC (in accordance with the 
range 1627÷1600 BC [Friedrich et al., 2006]) and in the range 1584÷1555 BC (in accordance with the  range  
1600÷1500 BC [Antonopoulos, 1992]). Consequently, we can consider the possibility of the final major 
catastrophic eruption near 1450 BC [LaMoreaux, 1995].  

÷
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3.8.4.10. Linkage of the increase of the global seismicity (along with the increase of the volcanic 

activity) in the end of the 20th  century and the eruption of Hekla 
 (1300 AD)  in Iceland and the great  earthquake (1303 AD) in China  

 
We present in Subsection 3.8.4.10 the linkage of the increase of the global seismicity (along with the 

increase of the volcanic activity) in the end of the 20th  [Abramov, 1997]  century and the eruption of Hekla  
(1300 AD)   [Thordarson and Larsen, 2007]  in Iceland and the great  earthquake (1303 AD) in China 
[Vikulin, 2008]. 

Considering the date  (1300 AD) of the eruption of Hekla  (1300 AD)   [Thordarson and Larsen, 2007]  
in Iceland and the date (1303 AD) of great earthquake in China [Vikulin, 2008] and using the founded range 
(3.256) of the fundamental global periodicities yr708696TT fclim1,ftec, ÷==  (of the global  seismotectonic 
and volcanic activities and the climate variability of the Earth determined by the  combined predominant 
non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, the Jupiter 
and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn), we can 
evaluate, respectively, the following ranges of the next possible seismotectonic and volcanic activities of the 
Earth  

                   AD,  20081996years 708years1300 years 696years1300 ÷=+÷+              (3.306)  
                    AD,  20111999years 708years1303 years 696years1303 ÷=+÷+              (3.307)  

The lower boundaries of these ranges are related with the increase of the global seismicity (along with the 
increase of the volcanic activity) in the end of the 20th  [Abramov, 1997]  century.  The upper boundary 
(2008 AD) of the range (3.306) is coincided with the predicted [Simonenko, 2007] date (2008 AD) of the 
next great Chinese earthquake.   The upper boundary (2011 AD) of the range (3.307) is coincided with the 
predicted [Abramov, 1997] date (2011 AD) of next strong earthquake in the Kanto region. The upper 
boundary (2011 AD) of the range (3.307) is coincided with the upper boundary (2011 AD) of the predicted 
[Simonenko, 2009; 2010] time range AD) 2011 2010( ÷  of the next sufficiently strong Japanese earthquake 
near the Tokyo region.    
 

 
3.9. The forthcoming range AD 20612020 ÷   of the maximal seismotectonic, volcanic and 

climatic activities of the Earth during the past 708696 ÷ years of  the history  
of humankind and the related subsequent subranges AD  3(2023 ± ,  and 

) of the increased peak global seismotectonic and volcanic activities 
AD3 38.2040 ±

AD32061 ±
 and the climate variability of the Earth  

 
Based on the established links between the different natural cataclysms in the history of humankind 

and using the founded range (3.256) of the fundamental global seismotectonic, volcanic and climatic 
periodicities yr708696TT fclim1,ftec, ÷==  of the global seismotectonic, volcanic and climatic activities  of 
the Earth,  we evaluated [Simonenko, 2012]  the forthcoming range 

                                                                 AD 20612020 ÷                                                          (3.308)  
of the maximal seismotectonic, volcanic and climatic activities of the Earth during the past years 
of  the history of humankind. We give below the details of this evaluation [Simonenko, 2012]. 

708696 ÷

Considering the date (63 BC) of the greatest earthquake destroyed the ancient Pontus, we can evaluate 
(based on the founded time periodicity 696 years given by (3.256a)  and the obvious calculation) the date of 
the next approximate peak of the maximal global seismotectonic, volcanic and climatic activity of the Earth 
(determined by the  combined predominant non-stationary energy gravitational influences on the Earth of the 
system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with 
the Jupiter and the Saturn) 

                                            AD 2025  years 6963  years 63 =×+− .                                        (3.309)  
Considering the date (63 BC) of the greatest earthquake destroyed the ancient Pontus, we can evaluate 

(based on the founded time periodicity 696 years given by (3.256a)) the approximate  date of the first nearest 
peak of the maximal global seismotectonic, volcanic and climatic activity of the Earth (determined by the  
combined predominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, 
the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the 



Saturn) 
                                                AD,  633  years 6961  years 63 =×+−                                       (3.310)  

which is very close to the date 626 AD of the recorded atmospheric veil in Europe [Stothers and Rampino, 
1983] and the resulted great frost events  in 628 AD [LaMarche and Hirschboeck, 1984]. This satisfactory 
agreement shows that these geophysical events are closely correlated.  

Considering the date (63 BC) of the greatest earthquake destroyed the ancient Pontus, we can evaluate 
(based on the founded time periodicity 696 years given by (3.256a)) the approximate date of the next second 
peak of the maximal global seismotectonic, volcanic and climatic activity of the Earth (determined by the  
combined predominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, 
the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the 
Saturn) 

                                             AD,  1329  years 6962  years 63 =×+−                                       (3.311)  
which is in good agreement with the mean date (1330.5 AD) of great earthquakes in England (occurred in 
1318 AD and 1343 AD [Vikulin, 2008]). It means that these great earthquakes in the ancient Pontus (63 BC) 
and in England (1318 AD and 1343 AD) can be considered as the closely related events for evaluation of the 
forthcoming range of the maximal seismotectonic, volcanic and climatic activities of the Earth in the 21st 
century AD during the past years of  the history of humankind. 708696 ÷

Considering the date  (1318 AD) of the great earthquake in England and the founded range (3.256) of 
the fundamental global periodicities yr708696TT fclim1,ftec, ÷==  (of the global seismotectonic and 
volcanic activities and the climate variability of the Earth determined by the  combined predominant non-
stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and 
the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn), we can evaluate 
the following range of the next possible strong earthquake in England  

                     AD,  20262014years 708years1318 years 696years1318 ÷=+÷+            (3.312)  
which gives the mean date  
                                                             AD. 2020AD)/2  2026(2014 =+                                            (3.313)  
of the initial phase of the rapid increase of the global seismotectonic and volcanic activities and the climate 
variability of the Earth in the 21st century.   

We can see that the upper value  (2026 AD) of the range (3.312) is near the evaluation  (3.309) of the 
approximate date of the next peak of the maximal global seismotectonic, volcanic and climatic activity of the 
Earth (determined by the  combined predominant non-stationary energy gravitational influences on the Earth 
of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the 
Sun with the Jupiter and the Saturn)  in the 21st century.  Consequently, we can evaluate (based on (3.309),  
(3.312) and (3.313)) the first more narrow subrange of the increased peak global seismotectonic and volcanic 
activities and the climate variability of the Earth in the 21st century  

                                               AD  32023AD 20262020 ±=÷                                             (3.314)  
determined by the time periodicity years3}){(T 1ЗMOON,-S = of recurrence of the maximal (instantaneous 
and integral) combined energy gravitational influences on the Earth of the system Sun-Moon and the Venus.  

To evaluate the duration of the next subrange of the increased global seismotectonic and volcanic 
activities and the climate variability of the Earth in the 21st century, it is necessary to consider the dates (in 
the range ) of the volcanic eruptions  [Thordarson and Larsen, 2007]  in Iceland on the 
Hekla (1300 AD, 1341 AD and 1389 AD) and the Katla (1357 AD) volcanic systems, and the dates (in the 
range ) of the great earthquakes [Vikulin, 2008] in China (1303 AD), England (1318 AD 
and 1343 AD), Armenia (1319 AD), Portugal (1320 AD, 1344 AD and 1356 AD), Austria  (1348 AD) and 
Japan (1361 AD). We evaluate the mean time value of these volcanic eruptions  and  great earthquakes as 
follows  

AD 13891300 ÷

AD 13891300 ÷

=++++++++++++ 13/)136113481356134413201319134313181303135713891341(1300 
                                                        AD.38.1338    years38.1338 ==                                            (3.315) 
 Using the mean time value (3.315) and the founded range (3.256) of the fundamental global periodicities 

 (of the global seismotectonic and volcanic activities and the climate 
variability of the Earth determined by the  combined predominant non-stationary energy gravitational 
influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 
gravitational interactions of  the Sun with the Jupiter and the Saturn), we can evaluate the second subrange of 
the increased global seismotectonic and volcanic activities and the climate variability of the Earth in the 21

years708696TT fclim1,ftec, ÷==

st 
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century as follows   
                                             AD,38.2046 2034.38  years708696years38.1338 ÷=÷+            (3.316)  
which is characterized by the increased peak  intensity of the global seismotectonic and volcanic activities 
and the climate variability of the Earth in the 21st century near the following mean time of the subrange 
(3.316): 
                                     AD,38.2040  years38.2040years2/)38.2046 2034.38( ==+             (3.317)  
Based on the mean time (3.317), we obtain the more narrow second subrange of the increased peak global 
seismotectonic and volcanic activities and the climate variability of the Earth in the 21st century  
                                                  AD.38.204338.2037 years3 years38.2040 ÷=±                         (3.318)  
determined by the time periodicity years3}){(T 1ЗMOON,-S = of recurrence of the maximal (instantaneous 
and integral) combined energy gravitational influences on the Earth of the system Sun-Moon and the Venus.  
 Reconstructing the ancient history of the humankind in his “Egypt’s Place in Universal History” [Von 
Bunzen, 1848], Bunzen revealed the marks of the planetary disaster related with the dramatic change of the 
landscape of the Central Asia in 10555 BC. Considering the ancient history of the humankind in his 
“Fingerprints of the Gods” [Hancock, 1997], Graham Hancock revealed the Egyptian marks of the planetary 
disaster in 10450 BC. We assumed [Simonenko, 2009; 2010] that the  Bunzen’s (10555 BC) and Hancock’s 
(10450 BC) estimations are related with the same (or, the distinct events of the same) planetary disaster 
during the time range  10555 BC  10450 BC in the ancient history of the humankind. Taking into account  ÷
the global time periodicity (of the Earth’s periodic seismotectonic and volcanic activity and the global 
climate variability) 12540 years [Simonenko, 2007; p. 136] of recurrence of the maximal seismotectonic and 
volcanic activity and the global climate variability and considering the documented dates (10555 BC [Von 
Bunzen, 1848] and 10450 BC [Hancock, 1997] revealed in the Central Asia and Egypt, respectively) as a 
manifestations of the same global cataclysm (accompanied by a super-earthquakes), we can evaluate the 
possible time range of recurrence of these disasters: 
     - (10555 years  10450 years) + 12540 years = 1985 years  ÷ ÷ 2090 years = 1985 2090 AD.   (3.319)  ÷
The founded (in Subsection 3.9) forthcoming range AD 20612020 ÷  [Simonenko, 2012] (of the maximal 
seismotectonic, volcanic and climatic activities of the Earth during the past 708696 ÷ years of the history of 
humankind) is the more accurate and narrow estimation of the obtained range 1985 2090 AD. However, 
taking into account the closeness of estimations (presented in Subsection 3.8.4.6) (3.295) and (3.296) to 
integers 15 and 3, respectively, we can conclude that the obtained mean estimation 10502.5 BC (of the 
planetary disaster (10555 BC) in the Central Asia [Von Bunsen, 1848, pp. 77-78, 88] and the planetary 
disaster (10450 BC) in ancient Egyptian Kingdom [Hancock, 1997]) can be considered as the more probable 
date related with the same planetary disaster in the ancient history of the humankind. Using the obtained 
mean estimation 10502.5 BC ((10555+10450)/2) of the planetary disaster (10555 BC) in the Central Asia 
[Von Bunsen, 1848, pp. 77-78, 88] and the planetary disaster (10450 BC) in ancient Egyptian Kingdom 
[Hancock, 1997], we can evaluate the more probable date of recurrence of these disaster: 

 ÷

                            - (10502.5  years ) + 12540 years = 2037.5 years  = 2037.5  AD,                             (3.320) 
which enter into the second obtained subrange  AD38.204338.2037 ÷   (given by (3.318)) of the increased 
peak global seismotectonic and volcanic activities and the climate variability of the Earth in the 21st  century. 
It means that the second obtained subrange AD38.204338.2037 ÷  will be the more dangerous and 
destructive for the humankind in the 21st century. 

Considering the date (63 BC) of the greatest earthquake destroyed the ancient Pontus and the founded 
time periodicity 708  years given by the upper value in the founded range (3.256) of the fundamental global 
periodicities yr708696TT fclim1,ftec, ÷==  of the global seismotectonic and volcanic activities and the 
climate variability of the Earth determined by the  combined predominant non-stationary energy gravitational 
influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 
gravitational interactions of  the Sun with the Jupiter and the Saturn), we can evaluate the third next subrange 
of the increased peak global seismotectonic and volcanic activities and the climate variability of the Earth in 
the 21st century  

                AD20642058 years32061 years3years)7083( years63 ÷=±=±×+−      (3.321)  
determined by the combined predominant non-stationary energy gravitational influences on the Earth of the 
system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with 
the Jupiter and the Saturn. The time periodicity years3}){(T 1ЗMOON,-S = (of recurrence of the maximal 
(instantaneous and integral) combined energy gravitational influences on the Earth of the system Sun-Moon 



and the Venus) determines the width of the subrange (3.321).  
Thus, taking into account the  founded range (3.256) of the fundamental global periodicities 

 [Simonenko, 2012] of the global seismotectonic and volcanic activities and 
the climate variability of the Earth determined by the  combined predominant non-stationary energy 
gravitational influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to 
the gravitational interactions of  the Sun with the Jupiter and the Saturn, we evaluate (inside the established 
range  [Simonenko, 2012] of the maximal seismotectonic, volcanic and climatic activities 
of the Earth during the past years of the history of humankind) the  subsequent subranges 

  given by (3.314), 

yr708696TT fclim1,ftec, ÷==

AD 20612020 ÷
708696 ÷

AD  3(2023 ± AD3 38.2040 ±   given by (3.318) and AD32061 ±    given by  (3.321)) 
of the increased peak global seismotectonic and volcanic activities and the climate variability of the Earth in 
the 21st century. Consequently, the worldwide safety precautions are needed to prepare in advance for these 
increased peaks of the global seismotectonic, volcanic and climatic intensification of the Earth in the 21st 
century. 
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4. THE SYNTHESIS OF MAIN RESULTS AND CONCLUSIONS 
 
 

We have founded in this monograph the cosmic energy gravitational genesis of the increase of the 
seismic and volcanic activity of the Earth in the end of the 20th century [Abramov, 1997] and in the begin-
ning of the 21st  Century AD [Simonenko, 2007]. To do this, the Thermohydrogravidynamics of the Solar 
System [Simonenko, 2007; 2007a; 2008] and the Fundamentals of the Thermohydrogravidynamic Theory of 
Cosmic Genesis of the Planetary Cataclysms [Simonenko, 2009; 2010] are  extended by taking into account 
the additional non-stationary energy gravitational influences on the Earth of the Sun owing to the gravita-
tional interactions of the Sun with the Jupiter, the Saturn,  the Uranus and the Neptune. The presented ex-
tended thermohydrogravidynamic theory of cosmic genesis of the planetary cataclysms is based on the estab-
lished generalized formulation [Simonenko, 2007a; 2007] of the first law of thermodynamics for moving 
rotating deforming compressible heat-conducting stratified macroscopic continuum region  subjected to the 
non-stationary Newtonian gravitational field. 

τ

Using the classical continuum-mechanical theoretical approach [Batchelor, 1967], we have presented 
in Subsection 1.1 the generalized expression (in non-equilibrium thermodynamics [Simonenko, 2004; 2006]) 
for the macroscopic kinetic energy of a small continuum region. We have generalized  [Simonenko, 2004; 
2006] the classical expression [de Groot and Mazur, 1962] in classical non-equilibrium thermodynamics for 
the macroscopic kinetic energy per unit mass of a small macroscopic continuum region  (considered in a 
stratified three-dimensional shear flow) by taking into account the irreversible shear component of the hy-
drodynamic velocity field related with the rate of strain tensor . The macroscopic kinetic energy (of the 
small macroscopic continuum region) is presented as a sum of the macroscopic translational kinetic energy 
and three Galilean invariants: the classical macroscopic internal rotational kinetic energy [de Groot and 
Mazur, 1962], the established macroscopic internal shear kinetic energy [Simonenko, 2004; 2006] and the 
established macroscopic internal kinetic energy of shear-rotational coupling [Simonenko, 2004; 2006] with 
small correction. The obtained formula (1.13) for the macroscopic kinetic energy per unit mass  

ije

ε k  and its 
particular form (1.24) for homogeneous continuum regions of spherical and cubical shapes generalize the 
classical de Groot and Mazur expression (1.1) in classical non-equilibrium thermodynamics [de Groot and 
Mazur, 1962;  Gyarmati, 1970] by taking into account the established [Simonenko, 2004; 2006; 2007a; 
2007] macroscopic internal shear kinetic energy per unit mass ε s , which expresses the kinetic energy of 
irreversible dissipative shear motion, and also the established [Simonenko, 2004; 2006]  macroscopic inter-
nal kinetic energy of shear-rotational coupling per unit mass ,  which expresses the kinetic energy of 
local coupling between irreversible dissipative shear and reversible rigid-like rotational macroscopic fluid 
motions. The presented expression (1.13) confirms the postulate [Evans, Hanley and Hess, 1984]  that the 
velocity shear (e ) represents an additional energy source taking into account in the Evans, Hanley and 
Hess’s postulated formulation of the first law of thermodynamics for non-equilibrium deformed states of 
fluid motion.   

coup
rs,ε

ij ≠ 0

We have presented  the established conceptions [Simonenko, 2004; 2006; 2007a; 2007]: the macro-
scopic internal shear kinetic energy (expressing the kinetic energy of the non-equilibrium shear motion near 
the mass center of the small macroscopic continuum region); the macroscopic internal kinetic energy of 
shear-rotational coupling (expressing the  kinetic energy of the nonlinear coupling between the equilibrium 
rigid-like rotational motion and the non-equilibrium shear motion near the mass center of the small macro-
scopic continuum region); the macroscopic internal kinetic energy of the small macroscopic continuum re-
gion (expressing the  macroscopic kinetic energy in the K' - coordinate system related with the mass center of 
the continuum region); the macroscopic internal shear-rotational kinetic energy (defined as the sum of the 
macroscopic internal rotational kinetic energy, the macroscopic internal shear kinetic energy and the macro-
scopic internal kinetic energy of shear-rotational coupling). The established analytical formulae for the mac-
roscopic kinetic energy (per unit mass), the macroscopic internal shear kinetic energy (per unit mass), the 
macroscopic internal rotational kinetic energy (per unit mass), the macroscopic internal kinetic energy of 
shear-rotational coupling (per unit mass), the macroscopic internal kinetic energy (per unit mass) are pre-
sented in tensorial forms for the small macroscopic continuum region considered in a stratified shear three-
dimensional flow. The analytical formulae for the established energies are derived from the mathematical 
analysis of the relative fluid motion (in the Euclidean space) considered in the inertial Cartesian coordinate 
system K  within the frame of the classical continuum-mechanical theoretical approach [Batchelor, 1967].  

We have established [Simonenko, 2004] that the macroscopic internal kinetic energy may be approxi-
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mated for a small continuum region  as the sum of the macroscopic internal shear kinetic energy, the macro-
scopic internal kinetic energy of shear-rotational coupling and the classical de Groot and Mazur macroscopic 
internal rotational kinetic energy [de Groot and Mazur,  1962]. 

We have presented the evidence  [Simonenko, 2006]  that the established proportionality [Simonenko, 

2004]  ε s   of the macroscopic internal shear kinetic energy per unit mass disε β=
2
1ε s

2
ij )(e  (for ho-

mogeneous continuum regions of spherical and cubical shapes) and the kinetic energy dissipation rate per 
unit mass =  in an incompressible viscous Newtonian continuum (characterized by the kine-

matic viscosity ) may be considered as the real foundation of the remarkable association [Prigogine and 
Stengers, 1984; Nicolis and Prigogine, 1989] between a structure and an order (and, hence, the related ki-
netic energy), on the one hand, and  the irreversible dissipation, on the other hand, for the dissipative struc-
tures in viscous Newtonian fluids.  

disε ν2 2
ij )(e

ν

Based on the postulates of thermodynamics, continuum mechanics and hydrodynamics, we have pre-
sented in Subsection 1.2  the equivalent generalized differential formulations (1.43), (1.50) and  (1.53) (given 
for the Galilean frame of reference) of the first law of thermodynamics [Simonenko, 2007a; 2007; 2008] for 
non-equilibrium shear-rotational states of the deformed finite one-component individual continuum region 
(characterized by the symmetric stress tensor ) moving in the non-stationary Newtonian gravitational 
field. The equivalent generalized differential formulations (1.43), (1.50) and (1.53) are valid for moving ro-
tating deforming compressible heat-conducting stratified macroscopic continuum region τ  subjected to the 
non-stationary Newtonian gravity). The generalized differential formulation (1.50):  

Т

                                   ++ ττ dKdU τπd dGδAQ np, ++δ= τ∂                                            (1.50)  
generalizes the classical [Gibbs, 1873; Landau and Lifshitz,  1976; p. 62] formulations (1.32) and (1.33):  

                                   , (pdV-QdU δ= dUdε ≡ , pdVδW −=− )  
by taking into account (along with the classical infinitesimal change of heat Qδ  and  the classical infinitesi-

mal change of the internal energy ) the infinitesimal increment of the macroscopic kinetic en-

ergy , the infinitesimal increment of the gravitational potential energy , the generalized expression 

[Simonenko, 2007a; 2007] for the infinitesimal  work   done on the continuum region  by the sur-

roundings of , the infinitesimal amount  of energy (given by the expression (1.52)) added (or lost) as 
the result of the Newtonian non-stationary gravitational energy influence on the continuum region 

≡τdU dU

τdK τπd
τ∂np,δA τ

τ dG
τ  during 

the infinitesimal time interval dt .  The equivalent generalized differential formulations (1.43), (1.50) and 
(1.53) of the first law of thermodynamics may be considered as the same differential formulations (1.43), 
(1.50) and (1.53) of the first law of thermohydrogravidynamics for the continuum region . The presented  
generalized expression [Simonenko, 2007a; 2007] for infinitesimal work   (done on the continuum 
region  by the surroundings of )  generalizes the classical [Gibbs, 1873] expression 

τ

τ∂np,δA
τ τ

                                                        = – δW = – pdV τ∂np,δA

by taking into account (for Newtonian continuum) the infinitesimal work  (given by expression (1.62)) 

of the acoustic forces and the infinitesimal work  (given by expression (1.63)) of  the viscous forces 

acting during the infinitesimal time interval d

сδA

sδA
t  on the boundary surface τ∂  of the individual continuum 

region  bounded by the continuum boundary surface τ τ∂ .  
Based on the equivalent generalized differential formulations (1.43), (1.50) and (1.53) of the first law 

of thermodynamics and the obtained expression (1.68) for the gravitational energy power  , we 
have presented in  Subsection 1.4 the established [Simonenko, 2007a; 2007] gravitational energy mechanism 
of the gravitational energy supply into the continuum region 

)τ(Wgr

τ  owing to the local time increase of the poten-
tial  of the gravitational field inside the continuum region ψ τ  subjected to  the non-stationary Newtonian 
gravitational field. We have presented the evidence that the revealed gravitational mechanism [Simonenko, 
2007a; 2007] of the gravitational energy supply into the continuum region τ  is consistent with the empirical 
finding [Abramov, 1997; p. 60] that the anomalous variations of the gravity field on the background of the 
Moon-Sun induced variations go in front of the earthquakes. Based on the equivalent generalized differential 
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formulations (1.43), (1.50) and (1.53) of the first law of thermodynamics, we have presented the conclusion 
[Simonenko, 2007] about the significant increase of the energy flux   (given by expression (1.70))  of 
the geo-acoustic energy from the focal region 

cvis,δF
τ  before the earthquake  in a good agreement with the results 

of the detailed experimental studies [Dolgikh et al., 2006]. 
 Using the established [Simonenko, 2004; 2006] generalized expression (1.6) for the total macroscopic 

kinetic energy )(K τ α  of each subsystem α, we have presented in Subsection 1.6 the deduction [Simo-
nenko, 2007] of the conditions of the thermodynamic equilibrium in the closed thermohydrogravidynamic 
system. We have considered in Subsection 1.6.1 the equilibrium state of the closed thermodynamic system in 
classical statistical physics [Landau and Lifshitz, 1976]. We have presented in Subsection 1.6.2 the conserva-
tion law [Simonenko, 2007] of the total energy for the closed  thermohydrogravidynamic system  in the 
frame of the continuum model. We have considered in Subsection 1.6.3 the classical statistical properties of 
the thermodynamically equilibrium subsystem in the classical statistical physics [Landau and Lifshitz, 1976]. 
We have presented in Subsection 1.6.4 the definition of entropy (of the thermodynamic system in the classi-
cal statistical physics [Landau and Lifshitz, 1976]) related with the Galilean principle of relativity. We have 
formulated in Subsection 1.6.5 the condition of the thermodynamic equilibrium for the closed thermohydro-
gravidynamic system considered in the coordinate system  

τ

sysK ′  of the mass center  of the thermohydro-
gravidynamic system under imposed conservation laws of the total energy and the total angular momentum. 
We have presented in Subsection 1.6.6 the generalized expression [Simonenko, 2007]  for the angular mo-
mentum of the subsystem 

sysC

ατ  (macroscopic continuum region ατ ) for the non-equilibrium  thermodynamic  
state. We have presented in Subsection 1.6.7 the condition (1.117) of the thermodynamic equilibrium [Simo-
nenko, 2007]  for the closed thermohydrogravidynamic system (consisting of N thermohydrogravidynamic 
subsystems) considering in the inertial coordinate system sysK ′  related with the mass center  of the ther-
mohydrogravidynamic system. We have presented in Subsection 1.6.8 the conditions of the thermodynamic 
equilibrium [Simonenko, 2007]  of the closed thermohydrogravidynamic system consisting of N thermohy-
drogravidynamic subsystem considered in the arbitrary inertial coordinate system 

sysC

K . We have presented in 
Subsection 1.6.8.1 the condition (1.121) of the thermodynamic equilibrium (of the closed thermohydrogra-
vidynamic system) describing the relative movements of the mass centers of all subsystems. We have pre-
sented in Subsection 1.6.8.2 the conditions (1.125) and (1.118) of the thermodynamic equilibrium [Simo-
nenko, 2007] of the closed thermohydrogravidynamic system relative to the macroscopic non-equilibrium 
kinetic energies of the subsystems τα.  We have presented the evidence  [Simonenko, 2007]  that the disturb-
ing cosmic energy gravitational influences (acting on the planets of the Solar System) can induce the irregu-
lar variations of the angular velocities of internal rotation of the planets of the Solar System.  
 Taking into account the shear-rotational thermodynamic states of the considered  macroscopic subsys-
tem , we have presented in Subsection 1.7 the generalization [Simonenko, 2007a; 2007] of the Le Chatelier 
– Braun principle [Landau and Lifshitz, 1976] on the closed equilibrium rotating thermohydrogravidynamic 
systems  (  + 

τ

τ τ ) consisting of two subsystems: macroscopic continuum region  (the subsystem in the  
viscous compressible continuum, which can be the focal region of the earthquakes) and some large subsys-
tem 

τ

τ  complementing the subsystem  to obtain the closed thermohydrogravidynamic system ( +τ τ τ ). We  
have presented the evaluation [Simonenko, 2007a; 2007] of the relaxation processes in the closed rotational 
thermohydrogravidynamic  systems  (  + τ τ ) in terms of the total  entropy of the rotational thermohydrogra-
vidynamic systems  (  + τ τ ) after the deformational influence on the  subsystem  . We have presented the 
evidence [Simonenko, 2007a; 2007] that the entropy S  of the thermohydrogravidynamic system is reduced 
up to the some value 

τ

y
S  (which is less than the value  characterizing the equilibrium state of the thermo-

hydrogravidynamic system) as a result of the external momentary deformational influence on the subsystem 
 (especially, induced by the cosmic gravitation)  related with the added macroscopic internal shear kinetic 

energy , when the component

oS

τ
τs )(K   iτi )(yy M=≡  of the angular momentum  do not  change di-

rectly as a result of sharp change  relative to the equilibrium zero value. Generalizing the Le 
Chatelier-Braun’s principle on the rotational thermohydrogravidynamic systems, we have presented the evi-
dence [Simonenko, 2007a; 2007]  that the total entropy of the closed thermohydrogravidynamic system is 
increased up to the value 

τM
0)(K τS >

0FΥ
S

=
, which is less than the value  and is larger than the value oS

y
S   
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0FΥ

S
=

> 
y

S )  as a result of the irreversible relaxation processes (in the  thermohydrogravidynamic sys-

tem) diminishing the result of the deformation influence on the subsystem  related with the added macro-
scopic internal shear  kinetic energy  to the subsystem . Taking into account that the external 

influence on the subsystem 

τ
0)(K τS > τ

τ  of the Earth ( τ  + τ ) can realize the increasing cosmic gravitational field (by 
means of  the term   given by the expression (1.68) in the generalized differential formulation of 
the first law of thermodynamics (1.53)), we have presented the evidence [Simonenko, 2007]  that the result-
ing reduction (up to the value 

)τ(Wgr

0FΥ
S

=
, which is less than the value  characterizing the equilibrium state of 

the rotational  Earth) of  the entropy S  of the Earth (

oS

τ  + τ ) reveals the creative role of the external cosmic 
energy gravitational influences on the Earth. 

We have presented in Subsection 1.8 the subsequent generalization (1.155) of the first law of thermo-
dynamics (for moving rotating deformed compressible heat-conducting stratified individual macroscopic 
region  of turbulent electromagnetic plasma subjected to the non-stationary Newtonian gravity and the 
non-stationary electromagnetic field) extending the established generalized differential formulation (1.50) by 
taking into account (along with the infinitesimal change  of the internal energy  of turbulent plasma 

without the emitted fast neutrons in the individual region 

τ

τdU τU
τ , the increment  of the macroscopic kinetic 

energy  of turbulent plasma in the individual region 
τdK

τK τ ) the following additional terms: the useful energy 
production  of fast neutrons (emitted during time interval dt  due to the thermonuclear reaction be-
tween two nuclei of deuterium or between  nuclei of deuterium and tritium in a high temperature plasma) 
characterized by the positive released energy power  (which should be directed from the individual re-
gion  to sustain the controlled thermonuclear process), the differential change  of electromagnetic 

energy  inside the individual region 

P(t)dt

P(t)
τ τm,e,dE

τm,e,E τ  of plasma, the energy flux  of electromagnetic energy 

radiated across the boundary surface  of the individual region 

me,δF

τ∂ τ , the differential heating  due to 
the differential work of electrodynamic forces (resulted to the Joule heating owing to the plasma current) and 
due to the dissipated electromagnetic waves inside the individual region 

me,δQ

τ , and the differential amount of 
energy  released (as a consequence of the thermonuclear burning mechanism proposed by Dr. 
Hans Bethe in 1939  for the Sun) due to the thermonuclear reaction related to the conversion of the differen-
tial amount of mass  (a small difference between the initial and final reactive components of the ther-
monuclear reaction inside the individual region 

0dmc τ
2 >

τdm
τ ) into energy. The generalized formulation (1.155) of the 

first law of thermodynamics (for moving rotating deformed compressible heat-conducting stratified individ-
ual macroscopic region  of turbulent electromagnetic plasma subjected to the non-stationary Newtonian 
gravity and the non-stationary electromagnetic field) is presented for the urgent practical realization of the 
controlled thermonuclear reactions [Kapitza, 1978] to enhance the energy power of humankind before the 
forthcoming range  [Simonenko, 2012]  of the maximal seismotectonic, volcanic and cli-
matic activities of the Earth in the 21

τ

AD 20612020 ÷
st century during the past 708696 ÷ years of  the history of humankind. 
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 We have presented in Section 2 the fundamentals of the cosmic geology [Simonenko, 2007; 2008]. 
We have presented in Subsection 2.1 the expressions [Simonenko, 2007] for the total energy and the 

total angular momentum  of the planet τ
ατ

E

ατM α  (and the satellite of the planet) taking into account the inter-
nal thermohydrogravidynamic structure of the planet τα  (and the satellite of the planet). Considering the 
Solar System as the open thermohydrogravidynamiс system containing the set of separate 
thermohydrogravidynamiс subsystems (the planets τα and the satellites of the planets) and disregarding the 
presence of atmospheres and hydrospheres (of the planets and the satellites of the planets), we have pre-
sented  the expressions (2.17) and (2.18)  [Simonenko, 2004а; 2007; 2008] for the total energy and the total 
angular momentum for the Solar System consisting of  N cosmic material objects (the Sun, the planets, the 
satellites of the planets, the midget planets, known asteroids and comets of the Solar System). Using the ex-
pressions (2.17) and (2.18), we have presented the evidence [Simonenko, 2004а; 2007; 2008] of the mutual 
energy transformations between the accumulated internal energies (of the accumulated internal energies of 
deformation, compression and strain of the continuum of the planets) and the macroscopic internal rotational 
[de Groot and Mazur, 1962; Gyarmati, 1970] and the macroscopic internal non-equilibrium kinetic energies 



[Simonenko, 2004] of the planets. We have demonstrated the evidence [Simonenko, 2004а; 2007; 2008] that 
the mutual energy transformations can result to the evolutionary change of the directions (and axes) of rota-
tion of the planets and the satellites (of the planets) of the Solar System. 
 Taking into account the system of the expressions (2.19) and (2.20), respectively, of the total energy 
and the total angular momentum of the subsystem (the subsystem of the planet ( +τ τ τ ) without the  sur-
rounding subsystem τ  (the atmosphere or the atmosphere and hydrosphere)) of the planet ( +τ τ ), we have 
presented the evidence [Simonenko, 2004а; 2007; 2008] of the mutual energy transformations between the 
accumulated internal energy   of the subsystem  and the macroscopic internal rotational kinetic en-

ergy  (of the subsystem of the planet ( +

τU τ

τr )K( τ τ τ )),  the macroscopic internal shear kinetic energy 

 (of the subsystem of the planet ( +τs )K( τ τ τ )) and the  macroscopic internal kinetic energy of shear-

rotational coupling  (of the subsystem of the planet ( +τ
puco

rs, )(K τ τ τ )) during the seismotectonic relaxa-
tion of the planet ( +τ τ ). These energy transformations gave the real evidence [Simonenko, 2007а; 2007; 
2008] to consider the seismotectonic relaxation of the planet ( +τ τ ) as the global planetary process [Vikulin, 
2003]. 

In Subsection  2.2. we have presented the non-catastrophic models [Simonenko, 2007a; 2007; 2008] of 
the thermohydrogravidynamic evolution of the total energy of the subsystems (  and τ τ ) of the planet 
( +τ τ )  subjected to the cosmic non-stationary energy gravitational influences of the Solar System and our 
Galaxy. Using  the generalized  differential  formulation (2.21) of the first law of thermodynamics (taking 
into account the additional term related with the space-time density  of  heating due to the disintegration of 
the radio-active elements inside the planet ( +

τe
τ τ ) of the Solar System and the human industrial activity), we  

have presented  in Subsection  2.2.1 the non-catastrophic model [Simonenko, 2007] of the thermohydrogra-
vidynamic evolution of the total energy  of  the  subsystem  (of the planet ( +τE τ τ τ )) bounded by the 
external boundary surface  τ∂ , on which the subsystem  interacts with the subsystem τ τ  representing the 
atmosphere  or atmosphere and hydrosphere of the planet ( +τ τ ). We assumed [Simonenko, 2007] that the 
planet ( +τ τ ) evolves during some time period without formation of the new planetary tectonic fractures in 
the subsystem  surrounded by the subsystem  τ τ  (the atmosphere or the atmosphere and hydrosphere).  

We have presented the integral expression (2.22) for the time evolution of the total energy  of 
the subsystem  of the planet ( +

τ))t((E
τ τ τ ) in the absence of the new catastrophic planetary tectonic fractures in 

the subsystem  surrounded by the subsystem τ τ  (atmosphere or atmosphere and hydrosphere). Based on 
expression (2.22), we have  presented the evidence [Simonenko, 2007a; 2007; 2008] that the time evolution 
of the total energy  of the subsystem  is determined by the dynamic and thermal energy exchanges  
on the boundary surface 

τ(E(t)) τ
τ∂ , by the time change of the potential  of the gravitational field in the subsys-

tem  of the planet ( +
ψ

τ τ τ ), by the thermal heating in the subsystem  owing to disintegration of the radio-
active elements. We have presented the evidence [Simonenko, 2007a; 2007; 2008] that  the regulation of the 

macroscopic internal rotational kinetic energy  and the angular velocity  of rotation of the 
subsystem  of the planet ( +

τ

τr (t))K( )τ(ω
τ τ τ ) is determined (under thermodynamically equilibrium regime of rotation of 

the subsystem  characterizing by constant angular velocity  for all continuum region   and by 

 and ) by the time change of the potential  of the gravitational field in 

the subsystem  and also by the dynamic energy exchange [Dolgikh, 2000] on the boundary surface 

τ )τ(ω τ

0(t))(K τs = 0(t))(K τ
coup

rs, = ψ
τ τ∂  

between the atmosphere-hydrosphere (representing the subsystem τ ) and the subsystem  containing the 
lithosphere and all geo-spheres of the planet ( +

τ
τ τ ). This conclusion is in agreement with the documented 

[Эйгенсон, 1958] phenomenon of the partial solar determination of the rotational regime of the Earth by 
means of atmospheric and oceanic circulations. We have presented also the evidence [Simonenko, 2007a; 
2007; 2008] that the long-term changes of the angular velocity of the Earth’s rotation are defined by changes 
of thermal heating owing to disintegration of the radio-active elements and by cyclic changes of the solar 
radiation activity, which change the distributions of the average circulations of the atmosphere and the 
oceans and the corresponding fields of the thermohydrodynamic parameters near the lithosphere of the Earth. 
Based on the expression (1.63) for the differential work  of the viscous Newtonian forces (related with 
the combined effect of the velocity shear and the molecular kinematic viscosity), we have presented the evi-

sδA
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dence [Simonenko, 2007a; 2007; 2008] that the energy exchange between the atmosphere-hydrosphere (the 
oceans and the atmosphere) and the lithosphere of the Earth is possible only under the presence of the me-

dium acoustic compressibility (i.e., 0 div ≠v ) and the medium deformations (i.e., ) in the 
boundary regions of fluid (in the oceans), air (in the atmosphere) and the lithosphere of the Earth. We have 
presented the evidence [Simonenko, 2007a; 2007; 2008] that it is necessary to use the real information about 
the oscillations of the lithosphere [Dolgikh, 2000] for modeling of the energy exchanges between atmos-
phere-hydrosphere and the lithosphere of the Earth by means of  the term  (alongside with the terms 

 and   in the expression (1.60) for the differential work ). 

0eαβ ≠

sδA

pδA cδA τnp,δA ∂

 Using the expression (2.22), we have presented the evidence [Simonenko, 2007a; 2007; 2008] that the 
compression of the subsystem  of the planet ( +τ τ τ ) accompanied by the increase of the gravitational po-
tential  in the fixed point of space must induce the increase of the internal thermal energy and the corre-
sponding heat flux from the kernel of the planet in accordance with the Milanovsky’s conclusion 
[Mилановский, 1979] that the geological eras of the intensive increase of the heat flux correspond to the 
eras of general compression of the Earth. We have presented in Subsection 2.2.1 the evidence [Simonenko, 
2007a; 2007; 2008] of the galactic energy gravitational genesis (related with the circulation of the Solar 
System around the center of our Galaxy) of each cycle (the compression, the stretching and the more long-
lasting reduction of the tectonic motions) of the geological eras of the Earth during the latest 570 million 
years. 

ψ

Using the generalized differential formulation (1.53) of the first law of thermodynamics (with the ad-
ditional source of heat 

τ
e  in the subsystem τ ) for the total combined subsystem τ  (atmosphere or atmos-

phere and hydrosphere) in the frame of the thermohydrogravidynamic theory, in Subsection 2.2.2 we have 
presented the deduction [Simonenko, 2007a; 2007; 2008] of the evolution equation (2.24) for the total en-
ergy τE  of the subsystems τ  taking into account the dynamic and thermal energy exchanges  on the bound-

ary surface  dividing the subsystems  and τ∂ τ τ , the time change of the potential  of the gravitational 
field in the subsystem 

ψ
τ  of the planet ( +τ τ ) and the total fluxes of heat (related with the electromagnetic 

radiation of the Sun) on the external boundary surface )τ(τ +∂  of the planet ( +τ τ ). 
Based on the generalized differential formulation (1.53) of the first law of thermodynamics taking into 

account all above listed energy factors for the subsystems  and τ τ  of the planet ( +τ τ ), in Subsection 2.2.3 
we have presented the deduction [Simonenko, 2007a; 2007; 2008] of the evolution equation (2.25) for the 
total energy )τ(τE

+  of the planet ( +τ τ ) consisting from the subsystems  and τ τ  interacting on the bound-

ary surface . The deduced (from the evolution equation (2.25)) expression (2.26) for the evolution of the 

total energy 

τ∂

)τ(τ(E(t))
+ ) is considered [Simonenko, 2007a; 2007; 2008] the long-term energy sources, 

which define (for the planet ( +τ τ )) the amazing wealth of the collective processes in the Solar System 
[Gor’kavyi and Fridman, 1994] excepting the striking heating. 

We have presented in Subsection 2.3 the synthesis of the cosmic geology [Simonenko, 2007; 2008] 
taking into account the convection in the lower geo-spheres of the planet (of the Earth), the density differen-
tiation, the translational, rotational and deformational movements of the tectonic plates, the creation of the 
new planetary tectonic fractures induced by the energy gravitational influences of the Solar System and our 
Galaxy. Using the generalized differential formulation (2.21) of the first law of thermodynamics, we have 
presented in Subsection 2.3.1 the fundamentals of the thermohydrogravidynamic N-layer model [Simonenko, 
2007; 2008] of the non-fragmentary geo-spheres of the planet (of the Earth) of the Solar System. Based on 
the founded [Simonenko, 2007; 2008] evolution equation  (2.30) of the total energy  of the subsystem  

(consisting of N successively  embedded to each other subsystems (geo-spheres) , , …, , ) of the 
planet ( +

τE τ

Nτ 1-Nτ 2τ 1τ
τ τ ), we have presented  in Subsection 2.3.1 the expression (2.31) for the necessary power  

 (in particular, of the external energy gravitational  influence), which is sufficient to break the 
crystalline root of the considered continental and oceanic planetary tectonic formations (characterized 
[Abramov and Molev, 2005; p. 245] by  the mantle penetrated deep roots) in one section characterized by the 
area . We have presented the evidence [Simonenko, 2007; 2008] that the translational mobility of the 
upper subsystem =  of the Earth  (also as a separate tectonic plates and geo-blocks of the subsystem 

)(∆W ibr Σ

i∆Σ
1τ extτ
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1τ = ) is greatly restricted by the deep roots of the continental and oceanic planetary formations (for two 
data  [Abramov and Molev, 2005; p. 245; Pavlenkova, 2007] about the roots of continents). We have pre-
sented the evidence [Simonenko, 2007; 2008]  (for two data  [Abramov and Molev, 2005; p. 245; Pavlenk-
ova, 2007; p. 107] about the roots of continents) that it is easier to realize (by action of the external cosmic 
gravitational field) the assumed [Pavlenkova, 1995] rotation of the mantle (as a whole) relative to the fluid  
kernel with the slippage on the boundary of the fluid kernel and the mantle of the Earth than to split the man-
tle of the Earth by means of the new global tectonic fracture breaking the mantle into two equal parts in the 
different sides of the main secant plane intersecting the centre of the Earth. Using  the evolution equation 
(2.32)  for  the sum   of the total  macroscopic kinetic energy  and the total macroscopic po-

tential (gravitational) energy    of the subsystem  (of the Earth or the planet of the Solar System), we 
have presented the evidence [Simonenko, 2007; 2008] that the revealed time period 100 million years  
[Hofmann, 1990] of  the maximal endogenous activity of the Earth [Morozov, 2007; p. 496] has the galactic 
energy gravitational genesis related with the periodic changes (characterized by the time period near 200 
million years) of the potential of the gravitational field (of the Solar System and our Galaxy) influencing on 
the Earth considered as the cosmic material object moving  (in the frame of the Solar System) around the 
center of our Galaxy. 

extτ

ττ πK + τK

τπ τ

Based on the generalized differential formulation (2.21) of the first law of thermodynamics, we have 
presented in Subsection 2.3.2 the thermohydrogravidynamic translational-shear-rotational N-layer tectonic 
model [Simonenko, 2007; 2008] of the fragmentary geo-spheres of the planet ( +τ τ ) (of the Earth) of the 
Solar System. We have presented the evolution equation (2.36) of the total energy of the geo-sphere =  
(the first upper layer of the subsystem  of the planet ( +

1τ extτ
τ τ τ )). The evolution equation (2.36) represents the 

thermohydrogravidynamic model [Simonenko, 2007; 2008] of the translational-shear-rotational tectonics of  
moving rotating deforming compressible heat-conducting stratified macroscopic geo-blocks   (j = 1, 2, …, 

) surrounded  by the coupled viscous plastic layers and subjected to the cosmic non-stationary Newto-
nian energy gravitational influences and heating related with disintegration of the radio-active elements (in 
the geo-sphere ).  

1jτ

1N

extτ
We have presented in Subsection 2.3.3 the universal energy thermohydrogravidynamic approach [Si-

monenko, 2007; 2008] intended to explain the formation of the planetary fractures in the frame of the gener-
alized differential formulation (2.21) of the first law of thermodynamics and the thermohydrogravidynamic 
translational-shear-rotational N-layer tectonic model (presented in Subsection 2.3.2) of the fragmentary (con-
sisting of geo-blocks) geo-spheres of the Earth (the planet of the Solar System). Based on the generalized  
differential  formulation (2.21) of the first law of thermodynamics and the mathematical inductive method, 
we have presented the deduction of the evolution equations (2.39), (2.41) and (2.42)  [Simonenko, 2007; 
2008] describing the evolution of the total energy of the geo-block  (of the first upper layer (geo-sphere) 

=  of the subsystem  of the planet ( +
1jτ

1τ extτ τ τ τ )) under formation of the integer number of various (un-
crossed between itself) breaking  fracture surfaces. Using the deduced evolution equations (2.39), (2.41) and 
(2.42), we have presented the established [Simonenko, 2007; 2008] energy sources of the destruction (forma-
tion of the fractures) in the geo-block : the  total non-stationary gravitational fields (the external, cosmic 
and the internal, terrestrial), the internal heat related with the disintegration of the radio-active elements,  the 
heat flux from the  upper boundary of  the situated below second layer (subsystem)  and the work of stress 
forces on the  surface of the geo-block . By considering in Subsection 2.3.3 the established [Simonenko, 
2007; 2008] exceptionally significant role of the external cosmic non-stationary gravitational field for forma-
tion of the tectonic fractures, we have presented the evidence [Simonenko, 2007; 2008] of the Khain’s sug-
gestion that the movements along the weakened planetary fractures  “can occur owing to the influence of the 
astronomical factors” [Khain, 1958; p. 138].  

1jτ

2τ

1jτ

We have presented in Section 3 the development of the established cosmic geophysics [Simonenko, 
2007; 2008]. We have presented in Subsection 3.1 the evaluation [Simonenko, 2007; 2008; 2009; 2010] of 
the instantaneous and integral energy gravitational influences on the Earth of the inner planets (the Mercury 
and the Venus) and the outer planets (the Mars, the Jupiter, the Saturn, the Uranus, the Neptune and the 
Pluto) of the Solar System.  
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We have presented in Subsection 3.1.1 the derived [Simonenko, 2009; 2010] analytical expression 
(3.6) for the instantaneous energy gravitational influences on the Earth of the inner and the outer planets  in 



the second approximation of the elliptical  orbits of the planets of the Solar System. We have presented the 
evidence [Simonenko, 2009; 2010] that the obtained evaluations [Simonenko, 2007; 2008] (presented in 
Subsection 3.1.2 based on the first approximation of the circular orbits of the planets) of the relative maximal 
planetary instantaneous energy gravitational influences on the Earth (of the planets of the Solar System) may 
be considered as the first sound approximation. 
 We have presented in Subsection 3.1.2 the evaluation [Simonenko, 2007; 2008] of the relative maxi-
mal planetary instantaneous energy gravitational influences on the unit mass of the Earth at the mass center 

 of the Earth and at the surface point  of the inner and the outer planets in the first approximation of 

the circular orbits of the planets. Considering the maximal positive value 

ЗC ЗD

int),(Сψ
t

max ЗЗМ∂
∂

 (of the partial 

derivative int),(Cψ
t ЗЗМ∂
∂

 of the gravitational potential  created by the Mercury at the mass 

center  of the Earth)  as a scale of the instantaneous energy gravitational influence of the planets of the 
Solar System on the Earth (in the considered first approximation of the circular orbits of the planets), we 
have presented in Subsection 3.1.2 the obtained [Simonenko, 2009; 2010]  numerical sequence of the non-
dimensional relative maximal powers of the planetary instantaneous energy gravitational influences on the 
Earth (on the unit mass of the Earth at the mass center  of the Earth): =37.69807434 (for the 

Venus), = 7.41055774 (for the Jupiter), = 1 (for the Mercury), = 0.67441034 (for 

the Mars), = 0.24601009 (for the Saturn), 

int),(Cψ ЗЗМ

ЗC

ЗC )Cf(2, 3

)Cf(5, 3 )Cf(1, 3 )Cf(4, 3

)Cf(6, 3 )Cf(7, 3  =0.00319056 (for the Uranus),  = 

0.00077565 (for the Neptune) and  = 3.4813·10

)Cf(8, 3

)Cf(9, 3
-8  (for the Pluto). Considering the maximal positive 

value int),(Dψ
t

max ЗЗМ∂
∂

 (of the partial derivative int),(Dψ
t ЗЗМ∂
∂

 of the gravitational  potential 

 created by the Mercury at the surface point  of the Earth) as a scale of the instantaneous 
energy gravitational influence of the planets of the Solar System on the Earth (in the considered first ap-
proximation of the circular orbits of the planets), we have presented in Subsection 3.1.2 the slightly corrected 
[Simonenko, 2009; 2010]  numerical sequence (of the previously obtained numerical values  [Simonenko, 
2007; 2008]) of the non-dimensional relative maximal powers of the planetary instantaneous energy gravita-
tional influences on the Earth (on the unit mass of the Earth at the surface point  of the Earth): = 

37.70428085  (for the Venus), = 7.40926122 (for the Jupiter), = 1 (for the Mercury), 

= 0.67420160 (for the Mars), = 0.24596865 (for the Saturn), 

int),(Dψ ЗЗМ ЗD

ЗD )Df(2, 3

)Df(5, 3 )Df(1, 3

)Df(4, 3 )Df(6, 3 )Df(7, 3  = 0.00319004 (for 

the Uranus),  = 0.00077552 (for the Neptune) and  = 3.4807·10)Df(8, 3 )Df(9, 3
-8  (for the Pluto).  Using the 

obtained numerical values  and  (for i=1, 2, 4, 5, 6, 7, 8, 9), we have presented in Subsection 
3.1.2 the conclusion [Simonenko, 2009; 2010] that the small difference of the combined maximal instantane-
ous energy gravitational influences of the planets of the Solar System at the points  and  D

)Df(i, 3 )Cf(i, 3

3C З of the Earth 
can explain the following related geophysical phenomena: the small oscillatory motion of the rigid kernel of 
the Earth relative to the fluid kernel of the Earth; the small oscillation of the Earth’s pole (i.e., the Chandler’s 
wobble of the Earth’s pole [Chandler, 1892]); the small oscillations [Vikulin, 2003] of the boundary of the 
Pacific Ocean (i.e., the seismic zone of the Pacific Ring); the oscillations [Dolgikh, 2000], rotations [Vikulin, 
2003] and deformations [Abramov, 1993; 1997] of the geo-blocks weakly coupled with the surrounding plas-
tic layers in all seismic zones of the Earth and the formation of fractures related with the strong earthquakes 
and the planetary cataclysms. 

We have presented in Subsection 3.1.3 the evaluation [Simonenko, 2007] of the relative maximal 
planetary integral energy gravitational influences on the Earth  in the approximation of the circular orbits  of 
the planets of the Solar System. Based on the equivalent generalized differential formulations (1.43), (1.50) 
and  (1.53) of the first law of thermodynamics used for the Earth, we have presented in Subsection 3.1.3 the 
following order of signification of the inner planets (the Mercury and the Venus) and the outer planets (the 
Mars, the Jupiter, the Saturn, the Uranus, the Neptune and the Pluto) of the Solar System [Simonenko, 2007]: 
the Venus ( ), the Jupiter (6409.89s(2) = 319.31s(5) = ), the Mars ( ), the Saturn 
( ), the Mercury ( ), the Uranus (

6396.2s(4) =
036.1s(6) = 1s(1) = 0133.0s(7) = ), the Neptune ( ) and 003229.0s(8) =
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the Pluto ( )  in respect of the relative non-dimensional values  of the maximal 
planetary integral energy gravitational influences (normalized on the maximal integral energy gravitational 
influence of the Mercury on the Earth) on the Earth. We have presented the evidence [Simonenko, 2007] of 
the predominant combined planetary integral energy gravitational influence on the Earth of the Venus and 
the Jupiter. The combined maximal planetary integral energy gravitational influence on the Earth of the 
Mars, the Saturn and the Mercury is one order of the magnitude smaller than the maximal integral energy 
gravitational influence of the Jupiter. The maximal combined planetary integral energy gravitational influ-
ences on the Earth of the Uranus, the Neptune and the Pluto are two, three and seven orders of the magni-
tude, respectively, smaller than the maximal integral energy gravitational influence of the Mercury on the 
Earth.  

7104495.1s(9) −⋅= s(i)

We have presented in Subsection 3.2 the evaluation [Simonenko, 2009; 2010]  of the relative maximal 
instantaneous and integral energy gravitational influence of the Moon on the Earth as compared with the 
maximal planetary instantaneous and integral energy gravitational influences on the Earth (of the planets of 
the Solar System). We have presented in Subsection 3.2.1 the evaluation [Simonenko, 2009; 2010] of the 
relative maximal instantaneous energy gravitational influence of the Moon on the Earth in the second ap-
proximation of the elliptical orbits of the Earth and the Moon around the combined mass center  of  MOON3,C

the Earth and the Moon. Considering the maximal positive value int),(Cψ
t

max ЗЗМ∂
∂

 (of the partial deriva-

tive int),(Cψ
t ЗЗМ∂
∂

 of the gravitational potential  created by the Mercury moving around the int),(Cψ ЗЗМ

mass center O of the Sun along the hypothetical circular orbit) as a scale of the instantaneous energy gravita-
tional influence of the planets of the Solar System and the Moon on the Earth, we have presented the founda-
tion the non-dimensional numerical value =19.44083, which means that the .)approxsecond,C(f 3МOONM

power of the maximal instantaneous energy gravitational influence of the Moon (on the unit mass of the 
Earth at the mass center  of the Earth) is 19.44083  times larger than the  power of the maximal instanta-3C
neous energy gravitational influence (on the unit mass at the mass center  of the Earth) of the Mercury  3C
moving  around the mass center O of the Sun along the hypothetical circular orbit. Taking into account the 
calculated non-dimensional maximal planetary instantaneous energy gravitational influences [Simonenko, 
2007] and maximal lunar instantaneous energy gravitational influence [Simonenko, 2009; 2010] on the unit 
mass of the Earth at the mass center  of the Earth:  =37.69807434 (for the Venus), 3C )Cf(2, 3

.)approxsecond,C(f 3МOONM =19.44083404 (for the Moon), = 7.41055774  (for the Jupiter), )Cf(5, 3

)Cf(1, 3 = 1 (for the Mercury), = 0.67441034 (for the Mars), = 0.24601009 (for the Sat-)Cf(4, 3 )Cf(6, 3

urn), )Cf(7, 3  =  0.00319056 (for the Uranus),  = 0.00077565 (for the Neptune) and  = )Cf(8, 3 )Cf(9, 3

3.4813·10-8 (for the Pluto), we have evaluated [Simonenko, 2009; 2010] the following order of significance 
(in the frame of the considered second approximation of the elliptical orbits of the Earth and the Moon 
around the combined mass center  of the Earth and the Moon) of the Moon and the planets of the  MOON3,C
Solar System: the Venus, the Moon, the Jupiter, the Mercury, the Mars, the Saturn, the Uranus, the Neptune 
and the Pluto in respect of the maximal planetary and lunar instantaneous energy gravitational influences on 
the unit mass of the Earth at the mass center  of the Earth. 3C

We have presented in Subsection 3.2.2 the evaluation [Simonenko, 2009; 2010] of the maximal inte-
gral energy gravitational influence of the Moon on the Earth in the approximation of the elliptical orbits  of 
the Earth and the Moon around the combined mass center  of the Earth and the Moon. Based on the 
equivalent generalized differential formulations (1.43), (1.50) and (1.53) of the first law of thermodynamics 
used for the Earth, we have presented in Subsection 3.2.2 the foundation [Simonenko, 2009; 2010] that 
maximal positive integral energy gravitational influence of the Moon on the Earth is 

 MOON3,C

13.0693approx.) second s(Moon, =  times larger than the maximal positive integral energy gravitational 
influence of the Mercury on the Earth.  Considering the aspect of the cosmic planetary gravitational prepara-
tion of the Earth’s geological cataclysms and the strong earthquakes, we have established the Venusian 
( ) [Simonenko, 2007], the Jupiter’s (6409.89s(2) = 319.31s(5) = )  [Simonenko, 2007]  and the Moon’s 
( ) [Simonenko, 2009; 2010] energy gravitational predominance in 13.0693approx.) second s(Moon, =
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supplying of the cosmic planetary and lunar gravitational energy to the focal region of the preparing earth-
quakes. The Venus, the Jupiter and the Moon form the predominant planetary and lunar integral energy 
gravitational influence on the Earth. The combined maximal integral energy gravitational influence on the 
Earth of the Mars ( ) [Simonenko, 2007], the Saturn (6396.2s(4) = 036.1s(6) = ) [Simonenko, 2007] and 
the Mercury ( ) [Simonenko, 2007]  is one order of the magnitude smaller than the maximal integral 
energy gravitational influence of the Jupiter. The combined maximal integral energy gravitational influence 
on the Earth of the Uranus ( ) [Simonenko, 2007], the Neptune ( ) [Simo-
nenko, 2007] and the Pluto ( ) [Simonenko, 2007] is two orders of the magnitude smaller 
(i.e., negligible) than the maximal integral energy gravitational influence of the Mercury.  

1s(i) =

0133.0s(7) = 003229.0s(8) =
7104495.1s(9) −⋅=

We have presented in Subsection 3.3 the evaluation of the energy gravitational influence of the Sun on 
the Earth owing to the gravitational interaction of the Sun with the outer large planets (the Jupiter, the Sat-
urn, the Uranus and the Neptune) of the Solar System. We have presented in Subsection 3.3.1 the evaluations 
of the relative characteristic maximal positive instantaneous energy gravitational influences of the Sun on the 
Earth owing to the gravitational interaction of the Sun with the outer large planets of the Solar System. We 
have presented in Subsection 3.3.1 the evaluations of the characteristic maximal positive instantaneous en-
ergy gravitational influences of the Sun on the Earth (owing to the gravitational interaction of the Sun with 
the outer large planets of the Solar System) as compared with the maximal planetary instantaneous energy 
gravitational influences on the Earth of the planets of the Solar System. The evaluations of the relative char-
acteristic maximal positive instantaneous energy gravitational influences of the Sun on the Earth (owing to 
the gravitational interaction of the Sun with the outer large planets of the Solar System) are obtained in the 
approximation of the elliptical orbit of the Earth  around the combined mass center   of the Sun 

and the outer large planets  ( ). Considering the maximal positive value 

3τ )jC(S,

jτ 8 7, 6, 5,j = int),(Cψ
t

max ЗЗМ∂
∂

 

(of the partial derivative int),(Cψ
t ЗЗМ∂
∂

 of the gravitational potential  created by the Mercury 

(moving around the mass center O of the Sun along the hypothetical circular orbit) at the mass center  of 

the Earth) as a scale of the energy gravitational influence of the Sun (owing to the outer large planets  

(j=5, 6, 7, 8) of the Solar System) on the Earth, we have calculated the following ratios   
(given by the expression (3.96) for ): 

int),(Cψ ЗЗМ

3C
jτ

char.) ,C (j,f 3M SUN

8 7, 6, 5,j = =char.) ,C (5,f 3M SUN   (for the Sun owing to 
the gravitational interaction of the Sun with the Jupiter), 

884.935424
923355.194char.),C (6,f 3M SUN = (for the Sun ow-

ing to the gravitational interaction of the Sun with the Saturn),   (for the Sun 
owing to the gravitational interaction of the Sun with the Uranus) and   (for 
the Sun owing to the gravitational interaction of the Sun with the Neptune). These numerical values 

 ( ) are calculated based on the characteristic maximal positive values 

27951.21char.),C (7,f 3M SUN =
833557.20char.),C (8,f 3M SUN =

char.),C (j,f 3M SUN 8 7, 6, 5,j =

) t ,(Cψ
t

 pos. max. char. З
S
3j∂

∂  (given by the expression (3.92) for 8 7, 6, 5,j = ) and the maximal positive 

value int),(Cψ
t

max ЗЗМ∂
∂

  (given by the expression (3.93)).  Taking into account the calculated numerical 

values  (char.),C (j,f 3M SUN 8 7, 6, 5,j = ),  we have established the following order of significance of the outer 

large planets of the Solar System: the Jupiter  ( ), the Saturn ( ), the Uranus ( ) and the Neptune ( ) 
in respect of the evaluated characteristic maximal positive instantaneous energy gravitational influences of 
the Sun on the Earth owing to the gravitational interaction of the Sun with the outer large planets of the Solar 
System. 

5τ 6τ 7τ 7τ

We have presented in Subsection 3.3.2 the evaluations of the maximal positive integral energy gravita-
tional influences of the Sun on the Earth (owing to the gravitational interaction of the Sun with the outer 
large planets) in the first approximation of the circular orbits of the planets of the Solar System. Based on the 
equivalent generalized differential formulations (1.43), (1.50) and (1.53) of the first law of thermodynamics 
used for the Earth, we have presented in Subsection 3.3.2 the foundation of the relations (3.106), (3.108) and 
(3.109) for the maximal positive integral energy gravitational influences of the Sun on the Earth owing to the 
gravitational interaction of the Sun with the outer large planets j  τ 8) 7, 6, 5,(j = . Considering the maximal 

176 
 



positive integral energy gravitational influence 0) t,0, 0, ,τ(SunE∆max j3gt
−  (given by the expression 

(3.109)) of the Sun on the Earth (owing to the gravitational interaction of the Sun with the outer large planet 
, ) and the maximal positive integral energy gravitational influence  

(given by the expression (3.48)) of the Mercury on the Earth, we have calculated the following relative val-
ues (ratios)  (defined by the relation (3.110) for 

jτ 8 7, 6, 5,j = )t,0,0,0,τ(Emax 1зgt
∆

approx.)first ,τs(Sun j− 8 7, 6, 5,j = ) of the maximal 
integral energy gravitational influences of the Sun on the Earth owing to the gravitational interaction of the 
Sun with the outer large planets j  : τ 8) 7, 6, 5,(j = 613239.4235approx.)first  ,τs(Sun 5 =−  (for the maxi-
mal integral energy gravitational influence of the Sun owing to the gravitational interaction of the Sun with 
the Jupiter),   4442965.887approx.)first  ,τs(Sun 6 =−  (for the maximal integral energy gravitational 
influence of the Sun owing to the gravitational interaction of the Sun with the Saturn), 

8337322.93approx.)first  ,τs(Sun 7 =−  (for the maximal integral energy gravitational influence of the 
Sun owing to the gravitational interaction of the Sun with the Uranus) and   

8477601.87approx.)first  ,τs(Sun 8 =−  (for the maximal integral energy gravitational influence of the 
Sun owing to the gravitational interaction of the Sun with the Neptune). Taking into account the calculated 
relative values  of the maximal integral energy gravitational influences of  the 

Sun on the Earth owing to the gravitational interaction of the Sun with the outer large planets  

, we have established the following order of signification of the outer large planets  

 of the Solar System: the Jupiter 

approx.)first ,τs(Sun j−

jτ
8) 7, 6, 5,(j = jτ

8) 7, 6, 5,(j = =− approx.)first  ,τ(s(Sun 5 )613239.4235 , the Saturn 

 the Uranus ),4442965.887approx.)first  ,τ(s(Sun 6 =− )8337322.93approx.)first  ,τ(s(Sun 7 =−  and 

the Neptune =− approx.)first  ,τ(s(Sun 8 )8477601.87  in respect of the presented evaluation of the 
maximal integral energy gravitational influences of  the Sun on the Earth owing to the gravitational interac-
tion of the Sun with the outer large planets j  τ 8) 7, 6, 5,(j = .  

Thus, considering the aspect of the cosmic gravitational preparation of the strong earthquakes, we 
have demonstrated in Subsection 3.3 the predominance of the maximal integral energy gravitational influ-
ences of  the Sun on the Earth owing to the gravitational interaction of the Sun with the Jupiter 

=− approx.)first  ,τ(s(Sun 5 )613239.4235 , with the Saturn =− approx.)first  ,τ(s(Sun 6  
),4442965.887  with the Uranus )8337322.93approx.)first  ,τ(s(Sun 7 =−  and with the Neptune 

=− approx.)first  ,τ(s(Sun 8   along with the established [Simonenko, 2007; 2009] Venusian )8477601.87
)6409.89(s(2) =  and the Jupiter’s )319.31(s(5) =  planetary energy gravitational predominance and the 

established [Simonenko, 2009; 2010] significant maximal integral energy gravitational influence of the 
Moon  on the Earth.  13.0693)approx.) second (s(Moon, =

Thus, taking into account the previously established planetary [Simonenko, 2007] and lunar [Simo-
nenko, 2009; 2010] numerical values and also the calculated relative values  of approx.)first ,τs(Sun j−
the maximal integral energy gravitational influences of  the Sun on the Earth owing to the gravitational inter-
action of the Sun with the outer large planets  jτ 8) 7, 6, 5,(j = ,  we have established in Subsection 3.3  the 
following order of significance of the cosmic bodies of the Solar System: the Sun (owing to the gravitational 
interaction of the Sun with the Jupiter, the Saturn, the Uranus and the Neptune), the Venus, the Jupiter, the 
Moon, the Mars, the Saturn, the Mercury,  the Uranus, the Neptune and the Pluto in respect of the evaluated 
integral energy gravitational influences of these cosmic bodies on the Earth.  

We have presented in Subsection 3.4 the confirmation of the real cosmic energy gravitational genesis 
of the strong earthquakes and the global planetary cataclysms. We have presented in Subsection 3.4.1 the 
confirmation [Simonenko, 2007; 2009; 2010] of the real cosmic energy gravitational genesis of  preparation 
of earthquakes. Using the approximate expression (3.51) for the maximal positive integral energy gravita-
tional influence  of the Venus (i = 2) on the macroscopic continuum region  of mass  )m,D,τ(E τ32g τ

τm  near the surface point  of the Earth, we have presented in Subsection 3.4.1 the evidence [Simonenko, зD
2007]  of the real cosmic energy gravitational genesis of the preparation of earthquakes. Based on the 
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equivalent generalized differential formulations (1.43), (1.50) and (1.53) of the first law of thermodynamics 
used for the Earth’s macroscopic continuum region  (the focal region of the preparing earthquake), we τ
have shown [Simonenko, 2007]  that the regular changes of the rotational regime of the Earth are related 
with the regular discharges of the accumulated potential energy (in the focal region of earthquakes) supply-
ing by the cosmic energy gravitational influences of the planets of the Solar System, the Sun and the Moon.  

We have presented in Subsection 3.4.2 the evidence of the integral energy gravitational influence on 
the Earth of the Sun (owing to the gravitational interactions of the Sun with the Jupiter  and  the Saturn 

) and the Moon as the predominant cosmic trigger mechanism of the earthquakes preparing by the com-
bined integral energy gravitational influence on the Earth of the Sun (owing to the gravitational interactions 
of the Sun with the Jupiter  and  the Saturn , the Uranus  and  the Neptune ), the Venus, the Jupi-
ter, the Moon, the Mars and the Mercury. Taking into account the obtained [Simonenko, 2007] numerical 
values  for the planets of the Solar System, the numerical value 

5τ

6τ

5τ 6τ 7τ 8τ

e(i)
13.0693approx.) second s(Moon, =  [Simonenko, 2009; 2010] for the Moon and the calculated (in Sub-

section 3.4.2) numerical values  for the Sun (owing to the gravitational interaction of the Sun with the 

outer large planets , ), we have established in Subsection 3.4.2 the predominant significance 

of the Sun (owing to the gravitational interactions of the Sun with the Jupiter  and  the Saturn ) and the 
Moon as the predominant cosmic trigger mechanism (along with the minor significance of the Sun (owing to 
the gravitational interactions of the Sun with the Uranus  and  the Neptune ), the Venus, the Jupiter and 
the Mercury) of the earthquakes preparing by the combined integral energy gravitational influences on the 
Earth of the Sun (owing to the gravitational interactions of the Sun with the Jupiter  and  the Saturn , 

the Uranus  and  the Neptune ), the  Venus, the Jupiter, the Moon, the Mars and the Mercury. 

(j)eS

jτ 8 7, 6, 5,j =

5τ 6τ

7τ 8τ

5τ 6τ

7τ 8τ
We have presented in Subsection 3.4.3 the catastrophic planetary configurations of the established 

cosmic seismology [Simonenko, 2007]. We have presented in Subsection 3.4.3.1 the foundation of the estab-
lished catastrophic planetary configurations [Simonenko, 2009; 2010] related with the maximal (positive) 
and minimal (negative) combined integral energy gravitational influence on the Earth  of the planets of 
the Solar System. We have presented in Subsection 3.4.3.2 the foundation of the new catastrophic planetary 
configurations related with the maximal (positive) and minimal (negative) combined integral energy gravita-
tional influence on the Earth  of the Sun (mainly, owing to the gravitational interactions of the Sun with 

the Jupiter  and  the Saturn , the Uranus  and  the Neptune ) and the planets of the Solar System. 

3τ

3τ

5τ 6τ 7τ 8τ
 We have presented in Subsection 3.5 the generalized thermohydrogravidynamic shear-rotational [Si-
monenko, 2007; 2009; 2010], classical  shear (deformational) [Короновский и Абрамов, 2000] and rota-
tional [Vikulin, 2003]  models of the earthquake focal region  and the established local energy and entropy 
prediction thermohydrogravidynamic principles determining the fractures formation in the macroscopic con-
tinuum  region . We have presented in Subsection 3.5.1 the thermodynamic foundation of the generalized 
thermohydrogravidynamic shear-rotational [Simonenko, 2007; 2009; 2010] and the classical  shear (defor-
mational) [Короновский и Абрамов, 2000] models of the earthquake focal region based on the generalized 
differential formulations (1.43) and (1.53) of the first law of thermodynamics. Using the evolution equation 
(1.67) (deduced from the generalized differential formulations (1.43) and (1.53) of the first law of thermody-
namics) of the total mechanical energy of the macroscopic continuum region 

τ,

τ

τ  (of the compressible viscous 
Newtonian continuum), we have presented in Subsection 3.5.1 the thermodynamic foundation of the classi-
cal deformational (shear) model [Короновский и Абрамов, 2000] of the earthquake focal region for the 
quasi-uniform medium of the Earth’s crust characterized by practically constant viscosity. Based on the gen-
eralized differential formulation (1.43) of the first law of thermodynamics for the macroscopic continuum 
region , we have presented the generalized thermohydrogravidynamic shear-rotational model [Simonenko, 
2007a; 2007] of the earthquake focal region by taking into account the classical macroscopic rotational ki-
netic energy [de Groot and Mazur, 1962;  Gyarmati, 1970], the macroscopic non-equilibrium kinetic energies 
[Simonenko, 2007], the internal (terrestrial) energy gravitational influences and the external (cosmic) energy 
gravitational influences on the focal region 

τ

τ  of the preparing earthquakes. Using the evolution equation 
(3.142) (deduced from the generalized differential formulations (1.43) and (1.53) of the first law of thermo-
dynamics) of the total mechanical energy of the macroscopic continuum region τ  (consisting from the sub-
systems  and  interacting on the surface intτ extτ iτ∂  of the geo-block ), we have presented in Subsection intτ



3.5.2 the evidence [Simonenko, 2007] of the physical adequacy of the rotational model [Vikulin, 2003] of 
the earthquake focal region for the seismic zone of the Pacific Ring. We have formulated in Subsection 
3.5.3.1 the local energy prediction thermohydrogravidynamic principles (3.144) and  (3.145) determining 
(according to the generalized differential formulations (1.43), (1.50) and (1.53) of the first law of thermody-
namics [Simonenko, 2007]) the fractures formation in the macroscopic continuum region  subjected the 
combined integral energy gravitational influence of the planets of the Solar System, the Moon and the Sun 
owing to the gravitational interaction of the Sun with the outer large planets (the Jupiter, the Saturn,  the 
Uranus and the Neptune). We have formulated in Subsection 3.5.3.2  the local entropy prediction thermohy-
drogravidynamic principle (3.155) determining (according to the generalized differential formulations (1.43), 
(1.50) and (1.53) of the first law of thermodynamics [Simonenko, 2007] and according to the generalized 
differential expression (3.150) [Simonenko, 2006a] for the entropy production per unit time in the one-
component macrodifferential deformed continuum element with no chemical reactions) the fractures forma-
tion (and related positive power  (given by (3.154)) of the geo-acoustic energy radiated from 
the unit mass of the focal region of earthquake) in the macroscopic continuum  region  subjected the 
combined integral energy gravitational influence of the planets of the Solar System, the Moon and the Sun 
owing to the gravitational interaction of the Sun with the outer  large planets (the Jupiter, the Saturn,  the 
Uranus and the Neptune). 

τ

0dt/δf cvis, >
τ τ

We have presented in Subsection 3.6 the real confirmation [Simonenko, 2007]  of  the cosmic energy 
gravitational genesis of the seismotectonic (and volcanic) activity and the global climate variability induced 
by the combined non-stationary cosmic energy gravitational influences on the Earth of the system  Sun-
Moon, the Venus,  the Mars, the Jupiter and the Sun owing to the gravitational interaction of the Sun with 
the Jupiter. We have presented in Subsection 3.6.1  the empirically established [Turner, 1925; Мэй Ши-юн, 
1960; Tamrazyan, 1962; Fedotov, 1965; Филлипас, 1965; Davison, 1936; Ambraseys, 1970; Christensen, 
Ruff 1986; Barrientos and Kansel, 1990; Jacob, 1984; Shimazaki and  Nakata, 1980; Suyehiro, 1984; Clark, 
Dibble, Fyfe, Lensen and Suggarte, 1965; Johnston, 1965; Abramov, 1997; p. 72; Vikulin and Vikulina, 
1989; Vikulin, 2003; p. 16-17] time periodicities of the seismotectonic activity of the Earth.  

Using the equivalent generalized differential formulations (1.43), (1.50) and  (1.53) of the first law of 
thermodynamics used  for the Earth, we have presented in Subsection 3.6.2  (in the frame of the real ellipti-
cal orbits of the Earth and the Moon, the Venus, the Mars and the Jupiter) the successive approximations of 
the obtained time periodicities of the maximal (instantaneous and integral)  energy gravitational influences 
on the Earth of the system  Sun-Moon [Simonenko, 2007], the Venus [Simonenko, 2007], the Mars [Simo-
nenko, 2007], the Jupiter [Simonenko, 2007]  and the Sun owing  to the gravitational interaction of the Sun 
with the Jupiter. We have presented in Subsection 3.6.2.1 the successive approximations of the time peri-
odicities [Simonenko, 2007] of the maximal (instantaneous and  integral)  energy gravitational influences on 
the Earth of the system Sun-Moon. We have presented in Subsection 3.6.2.2 the successive approximations 
of the time periodicities of the maximal (instantaneous and integral) energy gravitational influences on the 
Earth of the Venus. We have presented in Subsection 3.6.2.3 the successive approximations of the time peri-
odicities of the maximal (instantaneous and integral) energy gravitational influences on the Earth of the Jupi-
ter [Simonenko, 2007] and the Sun owing to the gravitational interaction of the Sun with the Jupiter. We 
have presented in Subsection 3.6.2.4 the successive approximations of the time periodicities of the maximal 
(instantaneous and integral) energy gravitational influences on the Earth of the Mars. 
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Based on the equivalent generalized differential formulations (1.43), (1.50) and (1.53) of the first law 
of thermodynamics used for the Earth, we have presented in Subsection  3.6.2.5 the successive approxima-
tions of the obtained [Simonenko, 2007] time periodicities (3.196) of the periodic global seismotectonic (and 
volcanic) activity and the global climate variability of the Earth (and related cosmic geological cycles of the 
thermohydrogravidynamic evolution of the Earth owing to the -factor and the -factor) induced by 
the combined different combinations  of the cosmic  energy gravitational influences on the Earth of the sys-
tem  Sun-Moon, the Venus, the Jupiter, the Mars and the Sun owing  to the gravitational interaction of the 
Sun with the Jupiter. The time periodicities (3.196) are determined by the successive global periodicities 

 (defined by the multiplications of various successive time periodicities related to the different combi-

nations of the following integer numbers: 

)G(a )G(b

energyT
4,5; 3, 2, 1,i =  2; 1,j =   3; 2, 1,k =   3; 2, 1,n =  1;,0o =l  

 ) of recurrence of the maximal combined energy gravitational influences on the 
Earth of the different combined combinations of the cosmic non-stationary energy gravitational influences on 
the Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational 
interaction of the Sun with the Jupiter. We have presented in Subsection 3.6.2.5 the successive approxima-
tions of the obtained [Simonenko, 2007] time periodicities (3.197) of the periodic global tectonic-

 1;,02 =l  1;,04 =l  1,05 =l



endogenous heating related with the periodic global volcanic activity and related global climate variability 
and the global variability of the quantities of the fresh water and glacial ice resources and the cosmic geo-
logical cycles of the thermohydrogravidynamic evolution of the Earth owing to the -factor. The time 
periodicities (3.197) are determined by the successive global periodicities  (defined by the multipli-
cations of various successive time periodicities related to the different combinations of the following integer 
numbers:  

)G(a
2/Tenergy

4,5; 3, 2, 1,i = 2; 1,j =    3; 2, 1,k = 3; 2, 1,n =   1;,0o =l   1;,02 =l   1;,04 =l  1,05 =l ) of 
recurrence of the maximal combined energy gravitational influences on the Earth of the different combined 
combinations of the cosmic non-stationary energy gravitational influences on the Earth of the system Sun-
Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with 
the Jupiter. We have presented in Subsection 3.6.2.5 the evidence [Simonenko, 2007; 2009; 2010] that the 
empirical time periodicities [Turner, 1925; Мэй Ши-юн, 1960; Tamrazyan, 1962; Fedotov, 1965; 
Филлипас, 1965; Davison, 1936; Ambraseys, 1970; Christensen, Ruff 1986; Barrientos and Kansel, 1990; 
Jacob, 1984; Shimazaki and  Nakata, 1980; Suyehiro, 1984; Clark, Dibble, Fyfe, Lensen and Suggarte, 1965; 
Johnston, 1965; Abramov, 1997; p. 72; Vikulin and Vikulina, 1989; Vikulin, 2003; p. 16-17]  of the seis-
motectonic activity of the Earth (submitted in Subsection 3.6.1) may be satisfactory approximated by the 
time periodicities  (3.196) characterized by different combinations of the various integer numbers. 

We have presented in Subsection 3.6.3 the evidence [Simonenko, 2007] of the cosmic energy gravita-
tional genesis of the strongest (M 7.9) Japanese earthquakes [Vikulin, 2003] near the Tokyo region and 
south-west from Tokyo. The predicted [Simonenko, 2009; 2010] “time range 2010 2011 AD (1927+83 

1923+88) of the next sufficiently strong Japanese earthquake near the Tokyo region”  (determined by the 
system  Sun-Moon, the Venus, the Jupiter, the Mars and the Sun owing to the gravitational interaction of the 
Sun with the Jupiter) was confirmed by occurrence of the strong Japanese earthquake on 11 March, 2011. 
The occurrence of the strong Japanese earthquake on 11 March, 2011 may be considered as the real confir-
mation of the proposed [Simonenko, 2007; Simonenko, 2009; 2010] cosmic energy gravitational genesis of 
the strongest Japanese earthquakes. 

≥ 
 ÷

 ÷

We have presented in Subsection 3.6.4 the evidence [Simonenko, 2007] of the mean time  periodicities 
94620 years and 107568  years of the global climate variability (related with the factor [Simonenko, 
2007; 2009; 2010] and factor [Simonenko, 2007; 2009; 2010]  determined by the cosmic non-
stationary energy gravitational influences on the Earth of the system  Sun-Moon, the Venus, the Mars, the 
Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter)  and the mean time 
periodicities 100845 years and 121612.5 years of the global climate variability related with the factor 
(determined by the cosmic non-stationary energy gravitational influences on the Earth of the system  Sun-
Moon, the Venus, the Mars,  the Jupiter and the Sun owing  to the gravitational interaction of the Sun with 
the Jupiter).  

-)G(a
-)G(b

-)G(b

We revealed [Simonenko, 2007] the cosmic energy gravitational genesis (related with the combined 
cosmic non-stationary energy gravitational influence on the Earth of the Sun, the Moon, the Venus, the Mars 
and the Jupiter) of the periodic Earth’s tectonic-endogenous heating (characterized by the time periodicity 
94620 years) induced by the periodic continuum deformation owing to the combined cosmic non-stationary 
energy gravitational influence on the Earth of the Sun, the Moon, the Venus, the Mars and the Jupiter. We 
have defined more precisely in Subsection 3.6.4 that the empirical time periodicity 94000 years during Pleis-
tocene [Hays, Imbrie and Shackleton, 1976] is in good agreement with the founded [Simonenko, 2007] time 
periodicity 94620 years (0.5  × 19 8 15 ×  × × 83 years) of the Earth’s global climatic variability related with 
the combined cosmic non-stationary energy gravitational influence on the Earth of the system  Sun-Moon, 
the Venus, the Mars, the Jupiter [Simonenko, 2007] and the Sun owing  to the gravitational interaction of the 
Sun with the Jupiter. The founded [Simonenko, 2007] time periodicity 94620 years (0.5 19 8 ×  × × 15× 83 
years) of the Earth’s global climatic variability is determined  (according the Table 2) by the global periodic 
Earth’s tectonic-endogenous heating related with the periodic continuum deformation (and related global 
volcanic activity) induced by the  combined cosmic non-stationary energy gravitational influence on the 
Earth of the system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational 
interaction of the Sun with the Jupiter. 

We revealed [Simonenko, 2007] the cosmic energy gravitational genesis (related with the combined 
cosmic non-stationary energy gravitational influence on the Earth of the Sun, the Moon, the Venus, the Mars 
and the Jupiter) of the periodic atmospheric-oceanic global planetary warming and cooling (characterized by 
the time periodicity 100845 years) as a consequence of the greenhouse effect produced by the gravity-
induced periodic tectonic-volcanic activization accompanied by increase of the atmospheric greenhouse 
gases (especially, the carbon dioxide CO2) concentration.  The established cosmic energy gravitational gene-
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sis [Simonenko, 2007] of the time periodicity 100845 years is in good agreement with the experimental data 
[Pinxian et al., 2003; p. 2524-2535], which revealed the time periodicity 100000 years of the climatic vari-
ability, and also with the experimental data [Pinxian et al., 2003; p. 2536-2548], which revealed the same 
time periodicity 100000 years of the variability of the carbon concentration in the Earth’s sedimentary rocks. 
We have defined more precisely in Subsection 3.6.4 that the empirical time periodicity 100000 years during 
Pleistocene [Muller and MacDonald, 1995] is in good agreement with the founded [Simonenko, 2007] time 
periodicity 100845 years (27 3 15 83 years) of the Earth’s global climatic variability related with the  ×  ×  ×
combined cosmic  non-stationary energy gravitational influence on the Earth of the system  Sun-Moon, the 
Venus, the Mars, the Jupiter [Simonenko, 2007] and the Sun owing  to the gravitational interaction of the 
Sun with the Jupiter. The founded [Simonenko, 2007] time periodicity 100845 years (27 3 × × 15× 83 
years) of the Earth’s global climatic variability is determined  (according the Table 2) by the global periodic 
Earth’s amospheric-oceanic warming as a consequence of the greenhouse effect produced by the gravity-
induced (owing to the combined cosmic non-stationary energy gravitational influence on the Earth of the 
system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  to the gravitational interaction of the 
Sun with the Jupiter) periodic global tectonic-volcanic activization accompanied by increased output  of the 
atmospheric greenhouse gases.  

We revealed [Simonenko, 2007] the cosmic energy gravitational genesis (related with the combined 
cosmic non-stationary energy gravitational influence on the Earth of the Sun, the Moon, the Venus, the Mars 
and the Jupiter) of the periodic Earth’s global tectonic-endogenous heating (characterized by the time perio-
dicity 107568 years induced by the periodic continuum deformation owing to the combined cosmic non-
stationary energy gravitational influence on the Earth of the Sun, the Moon, the Venus, the Mars and the 
Jupiter. We have defined more precisely in Subsection 3.6.4 that the empirical time periodicity 106000 years 
during Pleistocene [Hays, Imbrie and Shackleton, 1976] is in good agreement with the founded [Simonenko, 
2007] time periodicity 107568 years  (0.5 27× × 3× 32× 83 years) of the Earth’s global climatic variability 
related with the combined cosmic non-stationary energy gravitational influence on the Earth of the system  
Sun-Moon, the Venus, the Mars, the Jupiter [Simonenko, 2007] and the Sun owing  to the gravitational in-
teraction of the Sun with the Jupiter. The founded [Simonenko, 2007] time periodicity 107568 years  
(0.5 27 3 32 83 years) of the Earth’s global climatic variability is determined  (according the Table  ×  ×  ×  ×
2) by the global periodic Earth’s tectonic endogenous heating related with the periodic continuum deforma-
tion (and related global volcanic activity) induced by the combined cosmic  non-stationary energy gravita-
tional influence on the Earth of the system  Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing  
to the gravitational interaction of the Sun with the Jupiter. 

We revealed [Simonenko, 2007] the cosmic energy gravitational genesis (related with the combined 
cosmic non-stationary energy gravitational influence on the Earth of the Sun, the Moon, the Venus, the Mars 
and the Jupiter) of the periodic atmospheric-oceanic warming (characterized by the average time periodicity 
121612.5 years)  as a consequence of the greenhouse effect produced by the gravity-induced periodic global 
tectonic-volcanic activization accompanied by increase of the atmospheric greenhouse gases (especially, the 
carbon dioxide CO2) concentration. We have defined more precisely in Subsection 3.6.4  that the empirical 
time periodicity 122000 years during Pleistocene [Hays, Imbrie and Shackleton, 1976] is in good agreement 
with the founded [Simonenko, 2007] average time periodicity 121612.5 years  
(235 3 15 (11+12) 0.5 years) of the Earth’s global climatic variability  related with the combined  ×  ×  ×  ×
cosmic non-stationary energy gravitational influence on the Earth of the system  Sun-Moon, the Venus, the 
Mars, the Jupiter [Simonenko, 2007] and the Sun owing  to the gravitational interaction of the Sun with the 
Jupite. The founded [Simonenko, 2007] average time periodicity 121612.5 years  of the Earth’s global cli-
matic variability  is determined  (according the Table 2) by the global periodic Earth’s atmospheric-oceanic 
warming as a consequence of the greenhouse effect produced by the gravity-induced (owing to the combined 
cosmic non-stationary energy gravitational influence on the Earth of the system  Sun-Moon, the Venus, the 
Mars, the Jupiter and the Sun owing  to the gravitational interaction of the Sun with the Jupiter) periodic 
global tectonic-volcanic activization accompanied by increased output of the atmospheric greenhouse gases.  

We have presented in Subsection 3.6.5 the evidence [Simonenko, 2007; 2009; 2010] of the cosmic en-
ergy gravitational genesis of the modern short-term time periodicities of the Earth’s global climate variability 
determined by the combined cosmic factors: G-factor  related with the combined cosmic non-stationary en-
ergy gravitational influences on the Earth of the system Sun-Moon, the Mercury, the Venus, the Mars, the 
Jupiter and the Sun owing to the gravitational interaction of the Sun with the Jupiter; -factor related to 
the tectonic-endogenous heating of the Earth as a consequence of the periodic continuum deformation of the 
Earth due to the -factor; -factor related to the periodic atmospheric-oceanic warming or cooling as a 
consequence of the periodic variable (increasing or decreasing) output of the heated greenhouse volcanic 

)G(a

G )G(b



gases and the related variable greenhouse effect induced by the periodic variable tectonic-volcanic activity 
(activization or weakening) due to the G -factor; -factor related to the periodic variations of the solar 
activity owing to the periodic variations of the combined planetary non-stationary energy gravitational influ-
ence on the Sun. We have presented in Subsection 3.6.5 the following evaluated [Simonenko, 2009; 2010] 
successive ranges of the short-term time periodicities of the solar activity: 0.96359 1.2302  years (deter-
mined by the  combined energy gravitational influence of the Mercury, the Venus and the Earth on the Sun),  
5.5359 7  years  (determined by the  combined energy gravitational influence of the Mercury, the Venus 
and the Earth on the Sun),  11 13.008  years (determined by the  combined energy gravitational influence 
of the Jupiter, the Mercury, the Venus, the Earth and the Mars on the Sun), 19.9945 29.4525  years (de-
termined by the  combined energy gravitational influence of the Jupiter, the Mercury, the Saturn and the 
Venus on the Sun), 33 35.73  years  (determined by the  combined energy gravitational influence of the 
Jupiter, the Mercury, the Venus, the Mars and the Earth on the Sun), 47.36

)G(c

÷ 

÷ 
÷ 

÷ 

÷ 
÷ 53  years (determined by the  

combined energy gravitational influence of the Jupiter, the Mercury, the Venus and the Earth on the Sun), 
58.905 63.3564  years (determined by the  combined energy gravitational influence of the Jupiter, the 
Mercury, the Saturn and the Venus on the Sun), 83

÷ 
÷ 88.4095 years (determined by the  combined energy 

gravitational influence of the Jupiter, the Mercury, the Saturn, the Venus and the Earth  on the Sun) and  
106.7177 118.58  years (determined by the  combined energy gravitational influence of the Jupiter, the 
Mercury, the Saturn and the Mars on the Sun). We have presented in Subsection 3.6.5 the following evalu-
ated [Simonenko, 2009; 2010] and experimentally confirmed (by different authors mentioned in Subsection 
3.6.5) successive ranges of the main modern short-term time periodicities of the Earth’s global climate vari-
ability (determined by the variability of the solar activity and determined by the variability of the combined 
cosmic non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the Mercury, 
the Venus, the Mars, the Jupiter and the Sun owing to the gravitational interaction of the Sun with the Jupi-
ter): [0.96359 3] years, (3 7] years, (7

÷ 

 ÷  ÷ ÷ 15] years, [16÷ 19] years,  [19.9945 29.4525] years,  
[32 36] years, [16 36] years, [41.5 54] years, [57

 ÷
 ÷  ÷  ÷ ÷ 63.3564] years, [76÷ 96] years and [99÷ 124.5] 

years. 
We have presented in Subsection 3.7 the evidence of the cosmic energy gravitational genesis of the 

seismotectonic (and volcanic) activity and the global climate variability induced (owing to the G-factor, 
-factor and -factor) by the combined non-stationary cosmic energy gravitational influences on the 

Earth of the system  Sun-Moon, the Venus,  the Mars, the Jupiter and the Sun (owing to the gravitational 
interaction of the Sun with  the Jupiter, the Saturn, the Uranus and the Neptune). We have presented in Sub-
section 3.7.1 the evaluations of the time periodicities of the maximal (instantaneous and integral) energy 
gravitational influences of the Sun on the Earth owing to the gravitational interaction of the Sun with the 
outer large planets (the Jupiter, the Saturn, the Uranus and the Neptune). We have presented in Subsection 
3.7.1.1 the time periodicities years, 

)G(a )G(b

 11
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)(T 1ЗJ, =  12)(T 2ЗJ, = years and  83)(T 3ЗJ, = (in the first, second and 
third approximations, respectively) years of the maximal (instantaneous and integral) energy gravitational 
influences on the Earth of the Jupiter [Simonenko, 2007] and the Sun owing to the gravitational interaction 
of the Sun with the Jupiter. We have presented in Subsection 3.7.1.2 the evaluations of the time periodicities 

years, years and  29)(T 1ЗSAT, =  59)(T 2ЗSAT, =  265)(T 3ЗSAT, = years (in the first, second and third ap-
proximations, respectively) of the maximal (instantaneous and integral) energy gravitational influences on 
the Earth of the Saturn and the Sun owing to the gravitational interaction of the Sun with the Saturn. We 
have presented in Subsection 3.7.1.3 the evaluation of the time periodicity years (in the first 
approximation) of the maximal (instantaneous and integral) energy gravitational influences on the Earth of 
the Uranus and the Sun owing to the gravitational interaction of the Sun with the Uranus. We have presented 
in Subsection 3.7.1.4 the evaluations of the time periodicities years,                    

years and years (in the first, second and third approximations, respectively)      
of the maximal (instantaneous and integral) energy gravitational influences on the Earth of the Neptune and 
the Sun owing to the gravitational interaction of the Sun with the Neptune. We have presented in Subsection 
3.7.1.5  the foundation of the fundamental global time periodicities (3.239)  and (3.240) of the Earth’s peri-
odic global seismotectonic (and volcanic) activity and the global climate variability (related to the combined 
planetary, lunar and solar non-stationary energy gravitational influences on the Earth) induced by the differ-
ent combinations of the cosmic non-stationary energy gravitational influences of the system  Sun-Moon, the 
Venus, the Mars, the Jupiter and the Sun owing to the  gravitational interaction of the Sun with the Jupiter, 
the Saturn, the Uranus and the Neptune. Based on the generalized  formulation (1.50) of the first law of 
thermodynamics used for the Earth as a whole, we  have founded (taking into account the established [Simo-

 84)(T 1ЗU, =

)(T 1ЗN, =

 659)(T 2ЗN, =  2142)(T 3ЗN, =

 165



nenko, 2007] cosmic -factor and -factor) the fundamental sets of the fundamental global seismotec-
tonic and volcanic time periodicities  (given by (3.239))  and the fundamental global climatic peri-

odicities  (given by (3.239))  determined by the successive global fundamental periodicities  
(defined by the least common multiples  of various successive time periodicities related to the differ-
ent combinations of the following integer numbers: 

G )G(b

ftec,T

fclim1,T fenergy,T
L.C.M.

4; 3, 2, 1,i =  2; 1,j =    3; 2, 1,k = 3; 2, 1,n =  
    3; 2, 1,m =  1;q =  3; 2, 1,r =  1;,0o =l  1;,02 =l   1;,04 =l  1;,05 =l   1;,06 =l      1;,07 =l  1,08 =l ) 

of recurrence of the maximal combined energy gravitational influences on the Earth of the different com-
bined combinations of the cosmic non-stationary energy gravitational influences on the Earth of the system 
Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing to the gravitational interactions of the Sun 
with the Jupiter, the Saturn, the Uranus and the  Neptune. Based on the generalized  formulation (1.50) of the 
first law of thermodynamics used for the Earth as a whole, we  have founded  (taking into account the estab-
lished [Simonenko, 2007] cosmic -factor, the -factor and -factor) the fundamental set of the 
fundamental global volcanic and climatic periodicities (of the periodic tectonic-endogenous heating and re-
lated global volcanic activity related with periodic global climate variability and the global variability of the 
quantities of the fresh water and glacial ice resources related)

G )G(a )G(b

2/TTT fenergy,fendog,fclim2, ==   (given by 
(3.240)) related to the different combined combinations of the cosmic non-stationary energy gravitational 
influences on the Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter and the Sun owing to the 
gravitational interactions of the Sun with the Jupiter, the Saturn, the Uranus and the  Neptune. We have pre-
sented in Subsection 3.7.1.6 the thermohydrogravidynamic solution of the fundamental problem [Imbrie, 
Berger et al., 1993]  of the origin of the major 100-kyr glacial cycle (during Pleistocene) explained (in Sub-
section 3.7.1.6) by the non-stationary energy gravitational influences on the Earth of the system Sun-Moon, 
the Venus, the Jupiter and the Sun owing to the gravitational interactions of the Sun with the Jupiter, the 
Saturn,  the Uranus and the Neptune. The presented (in Subsection 3.7.1.6) extended thermohydrogravidy-
namic theory of the paleoclimate ([Simonenko, 2007; 2009; 2010] ) generalizes the Milankovitch’s (1930) 
theory of the paleoclimate (taking into account the  variability of solar insolation related to the periodic 
variations of the eccentricity of the Earth’s orbit due to the  -factor) by taking into account the additional 
established cosmic ,  and -factors. The presented (in Subsection 3.7.1.6) thermohydrogra-
vidynamic solution of the fundamental problem [Imbrie, Berger et al., 1993] of the origin of the major 100-
kyr glacial cycle gives the additional evidence of the validity of the extended thermohydrogravidynamic 
theory (taking into account the non-stationary energy gravitational influences on the Earth of the system 
Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of the Sun with the 
Jupiter, the Saturn,  the Uranus and the Neptune) destined to play an important role for the stable evolution-
ary development of humankind in the present and forthcoming epochs of the critical surrounding cosmic, 
seismotectonic, volcanic and climatic conditions of the human existence on the Earth. 

G
)G(a )G(b )G(c

We have presented in Subsection 3.8 the analysis of the global seismicity and volcanic activity of the 
Earth from the biblical Flood (occurred in 2104 BC according to the orthodox biblical chronology). Based on 
the extended thermohydrogravidynamic theory, we have presented the evidence of the forthcoming range 

 AD [Simonenko, 2012] of the maximal seismotectonic, volcanic and climatic activities (de-
termined mainly by the combined predominant non-stationary energy gravitational influences on the Earth of 
the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun 
with the Jupiter and the Saturn) of the Earth during the past 

20612020 ÷

708696 ÷ years of the history of humankind. 
We have presented in Subsection 3.8.1 the foundation of the ranges of the fundamental global seismotec-
tonic, volcanic and climatic periodicities years708696TT fclim1,ftec, ÷==   determined by the combined pre-
dominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, 
the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn. We 
have presented in Subsection 3.8.2 the evidence of the founded ranges of the fundamental global seismotec-
tonic and  volcanic time periodicities years708696TT fclim1,ftec, ÷==   based on the presented statistical 
analysis of the  historical eruptions [Thordarson and Larsen, 2007] of the Katla and the Hekla volcanic sys-
tems in Iceland. We have presented in Subsection 3.8.2.1 the generalized formulation [Simonenko, 2005] of 
the weak law of large numbers used for the presented statistical analysis of the  historical eruptions [Thordar-
son and Larsen, 2007]  of the Katla and the Hekla volcanic systems. Based on the generalized formulation 
[Simonenko, 2005] of the weak law of large numbers, we have presented in Subsection 3.8.2.2 the statistical 
analysis of the historical eruptions  [Thordarson and Larsen, 2007] of Katla volcano. 

183 
 

We have shown in Subsection 3.8.2.2 that the founded theoretical  range of the fundamental global 



seismotectonic, volcanic and climatic time periodicities years708696TT fclim1,ftec, ÷==  [Simonenko, 2012] 

contains the calculated mean experimental time periodicities  6785.697t
696

=∆  years  (given by (3.267)) 

and 7407.700t
708

=∆  years  (given by (3.268))  of the considered historical eruptions of Katla volcano 
[Thordarson and Larsen, 2007]. We have shown in Subsection 3.8.2.2  that the mean value 699.2096 years of 
the calculated mean experimental time periodicities (3.267) and (3.268) (of the considered eruptions of Katla 
volcano) is very close to the mean value 702 years the founded theoretical  range of the fundamental global 
seismotectonic, volcanic and climatic time periodicities years708696TT fclim1,ftec, ÷==  [Simonenko, 
2012]. We have shown in Subsection 3.8.2.3 that the mean value 697.5863 years of the calculated mean ex-
perimental time periodicities (3.269) and (3.270)  (of the considered eruptions of Hekla volcano) is in very 
good agreement with the mean value 702 years the founded theoretical  range of the fundamental global 
seismotectonic, volcanic and climatic time periodicities years708696TT fclim1,ftec, ÷==  [Simonenko, 
2012].  The obtained (in Subsections 3.8.2.2 and 3.8.2.3) agreements of the experimental and theoretical  
volcanic time periodicities confirm the established cosmic energy gravitational genesis [Simonenko, 2012] of 
the founded range of the fundamental global seismotectonic, volcanic and climatic time periodicities 

 determined by the combined predominant non-stationary energy gravita-
tional influences on the Earth of the system Sun-Moon, the Venus, the Jupiter and the Sun owing to the 
gravitational interactions of  the Sun with the Jupiter and the Saturn.  

years708696TT fclim1,ftec, ÷==

The founded theoretical  range of the fundamental global seismotectonic, volcanic and climatic time 
periodicities years708696TT fclim1,ftec, ÷==  [Simonenko, 2012] contains the experimental time periodicity 
704 years [Abramov, 1997] of the global seismotectonic activity of the Earth.  The founded theoretical  range 
of the fundamental global seismotectonic, volcanic and climatic time periodicities 

 [Simonenko, 2012] contains also the evaluated (based on the wavelet 
analysis) time periodicity of approximately 700 years [Goncharova, Gorbarenko, Shi, Bosin, Fischenko, Zou 
and Liu, 2012] characterizing the regional climate variability of the Japan Sea. These additional agreements 
confirm the validity of the founded theoretical  range of the fundamental global seismotectonic, volcanic and 
climatic time periodicities 

years708696TT fclim1,ftec, ÷==

years708696TT fclim1,ftec, ÷==  [Simonenko, 2012]  determined by the combined 
predominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, 
the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the Saturn.  

We have presented in Subsection 3.8.3  the evidence [Simonenko, 2011] of the cosmic energy gravita-
tional genesis of the predominant short-range time periodicities (7i/6 years and 6j/5 years determined by 
small integers i  and  j)  of the Chandler’s wobble of the Earth’s pole  [Chandler, 1892]  and sea water and air 
temperature variations [Simonenko, Gayko and Sereda, 2012]. We have presented in Subsection 3.8.3.1 the 
evidence [Simonenko, 2011]  of the cosmic energy gravitational genesis of the predominant time peri-
odicities     and   years2.1yr5/6)T(T 1chclim1,1 =≈=  ...years1.1666666.yr 6/7)T(T 2chclim1,2 =≈=  of the Chan-
dler’s wobble of the Earth’s pole and the global climate variability induced by the combined non-stationary 
energy gravitational influence on the Earth of the Venus, the Mercury and the Moon. We have presented in 
Subsection 3.8.3.2 the combined analysis of the Chandler’s wobble of the Earth’s pole [Simonenko,  2011] 
and the variations  of sea water and air temperature during 1969-2010 for the costal station Possyet [Simo-
nenko, Gayko and Sereda, 2012] of the Japan Sea. Based on the previous theoretical results [Simonenko,  
2007, 2008, 2009, 2010], the spectral  studies [Simonenko,  2011] of the  Chandler’s wobble of the Earth’s 
pole, and the spectral analysis [Simonenko, Gayko and Sereda, 2012] of the experimental variations of sea 
water and air temperature (during 1969-2010 AD for the costal station Possyet of the Japan Sea), we have 
confirmed the cosmic energy gravitational genesis of the predominant short-range periodicities  (7i/6 yr and 
6j/5 yr determined by small integers i and j) of the Chandler’s wobble of the Earth’s poll and sea water and 
air temperature variations for the costal station Possyet [Simonenko, et al.,  2012] of the Japan Sea. 

We have presented in Subsection 3.8.4 the additional evidence of the founded [Simonenko,  2012] 
range of the fundamental global periodicities yr708696TT fclim1,ftec, ÷==  (of the global seismotectonic 
and volcanic activities and the climate variability of the Earth) based on the established links between the 
great natural cataclysms in the ancient history of humankind from the final collapse of the ancient Egyptian 
Kingdom  and the biblical Flood to the increase of the global seismicity and the global volcanic activity in 
the beginning of the 20th century [Richter, 1969] and the modern  increase of the global seismicity and the 
volcanic activity in the end of the 20th century [Abramov, 1997] and in the beginning of the 21st century [Si-
monenko, 2007; 2009; 2010]. We have considered in Subsection 3.8.4.1 the great natural cataclysms in the 
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history of humankind from the final collapse of the ancient Egyptian Kingdom  (near 2190 BC) and the bib-
lical Flood (occurred in 2104 BC according to the orthodox Jewish and Christian biblical chronology).  

We have presented in Subsection 3.8.4.2 the evidence (confirming the founded range of the fundamen-
tal global periodicities yr708696TT fclim1,ftec, ÷==  [Simonenko,  2012]) of the linkage of the last major 
eruption of Thera  (1450 BC)  [LaMoreaux, 1995]  and the greatest earthquake destroyed the ancient Pontus 
(63 BC) [Cassius Dio Cocceianus, Dio's Roman history].  

We have presented in Subsection 3.8.4.3 the evidence (confirming the founded range of the fundamen-
tal global periodicities yr708696TT fclim1,ftec, ÷==  [Simonenko,  2012]) of the linkage of the greatest 
earthquake destroyed the ancient Pontus (63 BC), the earthquake destroyed the ancient Greek Temple of 
Artemis (614 AD ) and  the great  frost event (628 AD) [LaMarche and Hirschboeck, 1984] related with the 
atmospheric veil (recorded in Europe in 626 AD [Stothers and Rampino, 1983]) induced by the great un-
known volcanic eruption (apparently, Rabaul’ [LaMarche and Hirschboeck, 1984] eruption).  

We have presented in Subsection 3.8.4.4 the evidence (confirming the founded range of the fundamen-
tal global periodicities yr708696TT fclim1,ftec, ÷==  [Simonenko,  2012]) of the linkage of the greatest 
earthquake destroyed the ancient Pontus (63 BC) and the great earthquakes [Vikulin, 2008] occurred in Eng-
land (1318 AD and 1343 AD), Armenia (1319 AD),  Portugal (1320 AD, 1344 AD and 1356 AD) and Japan 
(1361 AD).  

We have presented in Subsection 3.8.4.5 the evidence (confirming the founded range of the fundamen-
tal global periodicities yr708696TT fclim1,ftec, ÷==  [Simonenko,  2012]) of the linkage of the final collapse 
of the ancient Egyptian Kingdom (occurred near 2190 BC), the biblical Flood (occurred in 2104 BC accord-
ing to the orthodox Jewish and Christian biblical chronology) and the last major  eruption of Thera  (1450 
BC) [LaMoreaux, 1995].   

We have presented in Subsection 3.8.4.6 the evidence (confirming the founded range of the fundamen-
tal global periodicities yr708696TT fclim1,ftec, ÷==  [Simonenko,  2012]) of the linkage of the planetary 
disasters in the Central Asia (10555 BC) [Von Bunsen, 1848, pp. 77-78, 88] and in the ancient Egyptian 
Kingdom (10450 BC) [Hancock, 1997], and the greatest earthquake destroyed the ancient Pontus (63 BC).  

We have presented in Subsection 3.8.4.7 the evidence (confirming the founded fundamental global pe-
riodicity 6965TT fclim1,ftec, ×==  years  years (given by (3.258a)) determined by the combined pre-
dominant non-stationary energy gravitational influences on the Earth of the system Sun-Moon, the Venus, 
the Mars, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter and the 
Saturn) of the linkage of the previous great eruptions of Thera (Santorini) (between 1628 and 1450 BC 
[LaMoreaux, 1995]), the greatest (in the United States in the past 150 years up to 1872) earthquake in Owens 
Valley, California (1872 AD), the eruptions of Santorini [Papazachos, 1989]  in 1866  and 1925 AD and the 
great eruption of Krakatau in 1883 AD.  

3480=

We have presented in Subsection 3.8.4.8 the evidence (confirming the founded fundamental global pe-
riodicity 6965TT fclim1,ftec, ×==  years  years given by (3.258a)) of the linkage of the eruption of 
Tambora (1815 AD) and the Thera (Santorini) eruption in the range 1700

3480=
÷  1640 BC [Betancourt, 1987; 

Habberten et al., 1989]. 
We have presented in Subsection 3.8.4.9 the evidence (confirming the founded fundamental global pe-

riodicity 6965TT fclim1,ftec, ×==  years  years  given by (3.258a)) of the linkage of the increase of 
the global seismicity (along with the increase of the volcanic activity) in the end of the 19

3480=
th century and in 

beginning of the 20th century [Richter, 1969] and the eruption of Thera (Santorini) between 1600 and 1500 
BC [Antonopoulos, 1992]. 

We have revealed (based on combined analysis presented in Subsections 3.8.4.1, 3.8.4.2, 3.8.4.3, 
3.8.4.4, 3.8.4.5,  3.8.4.6, 3.8.4.7, 3.8.4.8 and 3.8.4.9) in Subsection  3.8.4.9 the evident linkages between the 
different distinct eruptions of the Thera (Santorini) dated in the following ranges: 1700÷1640 BC [Betan-
court, 1987; Habberten et al., 1989],  1628÷1626 BC [LaMarche and Hirschboeck, 1984], 1627÷1600 BC 
[Friedrich et al., 2006], 1600÷1500 BC [Antonopoulos, 1992], 1628÷1450 BC [LaMoreaux, 1995] and the 
eruptions of the Tambora (1815 AD), the Santorini (1866 AD and 1925 AD) and the Krakatau (1883 AD). 
Based on the fundamental global seismotectonic, volcanic and climatic periodicity (3.258a)  and taking into 
account the eruptions of the Tambora (1815 AD), the Santorini (1866 AD and 1925 AD) and the Krakatau 
(1883 AD), we have founded the real possibility of different distinct eruptions of Thera (Santorini): near 
1665 BC (in accordance with the range 1700÷1640 BC [Betancourt, 1987; Habberten et al., 1989]), near 
1613.5 BC (in accordance with the range 1627÷1600 BC [Friedrich et al., 2006]) and in the range 
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1584÷1555 BC (in accordance with the  range  1600÷1500 BC [Antonopoulos, 1992]). We have shown in 
Subsection  3.8.4.9 that we can consider the possibility of the final major catastrophic eruption near 1450 BC 
[LaMoreaux, 1995].  

We have presented in Subsection 3.8.4.10   the evidence (confirming the founded range of the funda-
mental global periodicities yr708696TT fclim1,ftec, ÷==  [Simonenko,  2012]) of the linkage of the increase 
of the global seismicity (along with the increase of the volcanic activity) in the end of the 20th  century 
[Abramov, 1997] and the eruption of Hekla  (1300 AD)  in Iceland [Thordarson and Larsen, 2007] and the 
great  earthquake (1303 AD) in China [Vikulin, 2008]. 

We have presented in Subsection 3.9 the evidence of the forthcoming range  [Simo-
nenko, 2012]  of the maximal seismotectonic, volcanic and climatic activities of the Earth in the 21

AD 20612020 ÷
st century 

during the past years of  the history of humankind. We have presented in Subsection 3.9 the evi-
dence of the related subsequent subranges 

708696 ÷
AD  3(2023 ± , AD3 38.2040 ±  and ) of the in-

creased peak global seismotectonic and volcanic activities and the climate variability of the Earth in the 21
AD32061 ±

st 
century during the past years of  the history of humankind. It is clear that the additional funda-
mental studies (in the frame of the established cosmic geology and cosmic geophysics [Simonenko, 2007]) 
are needed to be not in some partial ignorance concerning to the behavior of the global seismicity of the 
Earth during the founded range  AD [Simonenko, 2012] of the maximal seismotectonic, vol-
canic and climatic activities of the Earth in the 21

708696 ÷

20612020 ÷
st century.   

Evaluating the negative consequences of the underground nuclear explosions (especially, the violation 
of the Earth’s water and seismotectonic processes leading to the established [Simonenko, 2007; 2009; 2010] 
decrease of the natural warning omens associated with the prepared earthquakes), we   proved [Simonenko, 
2007; 2009; 2010] that the underground nuclear explosions (during the established [Simonenko, 2007] mod-
ern activization of the seismotectonic and water-related processes of the Earth in the beginning of the 21st 
century) can initiate the small planetary cataclysm on the Eurasian continent accompanied by the super-
earthquakes. Appealing to the world community and to the United Nations, we identified [Simonenko, 2007; 
2009; 2010] the continuing underground nuclear explosions (produced by Northern Korea in 2006 and 2009 
during the modern seismotectonic planetary activization [Simonenko, 2007]) as the very dangerous crime 
against the humankind. In this regard, the statement that “the furthest underground nuclear explosions and 
the furthest proliferation and development of the military technologies of production of the nuclear weapon 
in the world are disagree with the ethics of survival of the Eurasian nations in the third millennium” [Simo-
nenko, 2010; p. 272] is still very actual for the humankind in the beginning of the 21st century.  

We have presented in this monograph the final synthesis of the Cosmic Geology and the Cosmic Geo-
physics to create in advance the urgent technologies of the long-term deterministic predictions of the strong 
earthquakes, the planetary cataclysms, the Earth’s climate and the Earth’s fresh water resources  in order to 
sustain the stable evolutionary development, the survival, greatness and cosmic dignity of the humankind in 
the 21st century before the founded forthcoming range AD 20612020 ÷   of the maximal seismotectonic, vol-
canic and climatic activities of the Earth during the past 708696 ÷ years of  the history of humankind.  
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Introduction 
 

 The developments of the human civilizations are the most mysterious and difficultly predictable 
phenomena. Considering the history of the human civilizations, one can conjecture that the survivals of 
civilizations depend on the political and the natural environmental (seismotectonic, volcanic and climatic) 
conditions. Can the world community (and especially, the scientific community) give the exact prediction of 
the development of the modern human civilization in the near future?  
 It is well known that the ancient Egyptian Kingdom declined near 2190 BC as a consequence of the 
long catastrophic drought related with the extraordinary decrease of the depth of the Nile. The decline of the 
ancient Egyptian Kingdom coincided with the small ice age in Europe. The recurrence of the next 
catastrophic drought occurred in Egyptian Cairo in 1200 AD during the Arabic conquest of the Egypt.  
 The ancient European civilization on islands Tira and Crete collapsed as a consequence of the founded 
(in Subsection 3.8.4.9) different distinct eruptions of Thera (Santorini): near 1665 BC (in accordance with 
the range 1700÷1640 BC [Betancourt, 1987; Habberten et al., 1989]), near 1613.5 BC (in accordance with 
the range 1627÷1600 BC [Friedrich et al., 2006]) and in the range 1584÷1555 BC (in accordance with the  
range 1600÷1500 BC [Antonopoulos, 1992]). These volcanic eruptions decreased the mean planetary 
temperature of the Earth leading to the bad harvests worldwide. 
 It is well known that the ancient Mayas’ civilization destructed in the beginning of the ninth century 
AD as a consequence of the long catastrophic drought leading to the disappearance of the fresh water 
resources in the lakes and artificial reservoirs intended for collection of the rain-water. The destruction of the 
Mayas’ civilization coincided with the extremely cold weather of the European history.  
 The cosmic geophysics [Simonenko, 2007; 2009; 2010] gives the opportunity to discover one clear 
sight towards these planetary catastrophes. Analyzing the seismic belts around the Pacific Ocean, the 
Japanese seismologist Hattory concluded [Hattory, 1977] that the characteristic time of the seismic cycle was 
approximately 35 years for different seismic zones. This average seismic periodicity 35 years was explained 
by the average value 34.5 year of the evaluated time range =÷ 3633 ( )12113 ÷×  years [Simonenko, 2007; 
2009] of the Earth’s periodic seismotectonic and volcanic activity and the global climate variability induced 
by the combined cosmic non-stationary energy gravitational influence on the Earth of the system Sun-Moon, 
the Venus, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter. The 
established time periodicity 35 years [Hattory, 1977] of the sesmotectonic activity of various regions of the 
seismic zone of the Pacific Ring is in good agreement with the mean value 34.5 years of the established 
range =÷ 3633 ( )12113 ÷×  years [Simonenko, 2007; 2009] of the Earth’s periodic seismotectonic and 
volcanic activity and the global climate variability. The mean value 34.5 years (of the established range 

 years [Simonenko, 2007]) is also in good agreement with  the evaluated [Dmitrieva and Ponomarev, 
2012] empirical time periodicity 37  years  characterizing the South-Eastern tropical area, Kuroshio Current 
region (including East China and Japan/East Seas), central and northeastern Pacific. These good agreement 
(of the independent studies [Hattory, 1977; Simonenko, 2007; Dmitrieva and Ponomarev, 2012]) is the  real 
confirmation of  the validity of the thermohydrogravidynamic theory [Simonenko, 2007; 2009; 2010] of the 
seismotectonic, volcanic and climatic evolution of the Earth.  

3633÷

 We have the time duration 3390 years (2190+1200) between the catastrophic drought in the ancient 
Egyptian Kingdom (2190 BC) and the catastrophic drought in 1200 AD occurred in the Egyptian Cairo. The 
time duration 3390 years gets into the evaluated time range ( 1211151934203135 ÷×× )=÷  years 
[Simonenko, 2007; p. 134] of the time periodicities of the Earth’s periodic seismotectonic and volcanic 
activity and the global climate variability explained (in Subsection 3.6.2.5) by the combined cosmic non-
stationary energy gravitational influence on the Earth of the system Sun-Moon, the Mars, the Jupiter and the 
Sun owing to the gravitational interactions of the Sun with the Jupiter. 
 We have the time duration 400 years between the catastrophic droughts related with the destruction of 
the ancient Mayas’ civilization and with the terrible hunger in Egyptian Cairo in 1200 AD. The time duration 
400 years is very close to the time periodicity 405 years = 27× 15 years [Simonenko, 2007; p. 144] of the 
Earth’s periodic seismotectonic and volcanic activity and the global climate variability determined the 
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combined cosmic non-stationary energy gravitational influence on the Earth of the system  Sun-Moon and 
the Mars. The revealed satisfactory correspondences of the evaluated time durations between the catastrophic 
droughts and the founded time periodicities  [Simonenko, 2007; p. 132] of the Earth’s periodic 
seismotectonic and volcanic activity and the global climate variability are in good agreement with the stated 
conclusion [Simonenko, 2007; p. 150] that these time periodicities must characterize the time variability of 
the quantity of the fresh water in lakes, artificial reservoirs and rivers of the Earth’s continents. The revealed 
satisfactory correspondences are in good agreement with the cosmic geophysics [Simonenko, 2007] 
considering the catastrophic droughts as manifestations of the seismotectonic and volcanic activity of the 
Earth.  
 The stated hypothesis [Ilyichev and Cherepanov, 1991; p. 1371] about the recurrence of the super-
earthquakes characterized by the average approximate time periodicity of 10000 years was confirmed by the 
foundation of the range (10032÷10944) years [Simonenko, 2007; p. 140] of the time periodicities of the 
Earth’s periodic seismotectonic and volcanic activity and the global climate variability determined by the 
combined cosmic non-stationary energy gravitational influence on the Earth of the system  Sun-Moon, the 
Venus, the Mars, the Jupiter and the Sun owing to the gravitational interactions of  the Sun with the Jupiter. 
Using the average value 10488 years of the founded range (10032÷10944) years [Simonenko, 2007; p. 140] 
and taking into account the  documented time 10555 BC of the planetary disaster revealed in the Central 
Asia  [Von Bunsen, 1848; p. 77-78, 88], we evaluate the time 67 BC (10488-10555=-67) of the super-
earthquake in the Central Asia, which is very close to the documented time 63 BC of “the greatest 
earthquake ever experienced” [Cassius Dio Cocceianus] destroyed many cities of the ancient Pontus located 
in the Minor Asia. Among other things, this  greatest Pontic earthquake (63 BC) led to the suicide of 
Mithridates VI of Pontus (the king of Pontus also known as Eupator Dionysius remembered as the most 
formidable enemy of the Roman Republic during the Mithridatic Wars)  and to the final defeat of Pontus in 
63 BC.
 The mentioned above  catastrophic events  (catastrophic droughts, great volcanic eruptions, planetary 
disasters and  super-earthquakes)  in the ancient history of the humankind show that it is very important for 
elites and governments of the Eurasian nations to anticipate ahead of time the natural planetary cataclysms to 
realize the preventive precautionary measures for the evolutionary development in the 21st century. Taking 
into account the founded forthcoming range AD 20612020 ÷  [Simonenko, 2012] of the maximal 
seismotectonic, volcanic and climatic activities of the Earth during the past 708696 ÷ years of the history of 
humankind, we analyze the joint survival of the Eurasian nations in the 21st century. 
 Taking into account the modern increase of the seismotectonic and volcanic activity of the Earth 
[Simonenko, 2007; p. 151], we concluded [Simonenko, 2007; 2009; 2010] that the subsequent underground 
nuclear explosions on the Eurasian continent may initiate the super-earthquake characterized  [Simonenko, 
2007; p. 92] by the destructive slippage along the “Atlantiok” zone  [Abramov, 1997; p. 74] penetrating the 
Eurasian continent from the Japan Sea to the Eurasian continent and Iceland. We can state that the more 
reasonable variant of survival of the Eurasian nations in the 21st century is related with the  rapid ratification 
of the CTBT in the near future by the Eurasian states (the Democratic People’s Republic of Korea, 
Indonesia, Iran, Israel, Egypt, Pakistan, India and China), whose ratification is necessary for the CTBT to go 
into force.  
 Taking into account the founded forthcoming range AD 20612020 ÷  [Simonenko, 2012] of the 
maximal seismotectonic, volcanic and climatic activities of the Earth during the past years of the 
history of humankind, we appeal to the elites and governments of the Eurasian nations (ratified the CTBT) to 
consider the possibility [Simonenko, 2010]  of the subsequent integration of the Eurasian nations in the 
frame of the Eurasian Association (EAA) intended for the joint survival of the Eurasian states in the 21

708696 ÷

st 
century.  

We accentuate the nonproliferation of the weapons of mass destruction on the Eurasian continent 
during the modern critical time period of the human existence on the Earth related with the founded  
forthcoming range  [Simonenko, 2012]  of the maximal seismotectonic, volcanic and climatic 
activities of the Earth during the past 

AD 20612020 ÷
708696 ÷ years of  the history of humankind. The final rapid 

ratification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is argued to support the geopolitical 
equilibrium and stability in the world required for survival of the Eurasian nations in the 21st century. The 
establishment of the Eurasian Association (EAA) of the Eurasian states (ratified the CTBT) in a realistic 
perspective can facilitate the entry into force of the CTBT. Whether such responses prevail over the shorter-
term modern problems of the Eurasian states depend on the awareness of the critical moment of the 
seismotectonic, volcanic and climatic conditions on the Earth [Simonenko, 2007; 2009; 2010, 2012].  
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 The real cosmic seismotectonic, volcanic and climatic time periodicities and impending 

threats for the human existence on the Earth in the 21st century 
 

 Based on the founded cosmic geology [Simonenko, 2007; p. 71-92], we founded the 100 million years 
galactic time periodicity  [Simonenko, 2007; p. 84] of the galactic hot ages of the maximal thermal heating 
[Hofmann, 1990; p. 340-341] of the Earth as a result of the Earth’s periodic compressions and deformations 
induced by the periodic non-stationary galactic energy gravitational influences of our Galaxy on the Earth 
moving in the frame of the Solar System around the center of our Galaxy with the time period of 200 million 
years. We revealed the galactic energy gravitational genesis [Simonenko, 2007; p. 68] of each cycle (the 
compression, stretching and more long-lasting reduction of the tectonic motions) of the geological eras of the 
Earth during the latest 570 million years.  
 The evaluated (in the frame of the cosmic geophysics [Simonenko, 2007]) range (116325÷126900) 
years [Simonenko, 2007; p. 146] of the time periodicities (of the Earth’s periodic seismotectonic and 
volcanic activity and the global climate variability) contains the empirical time periodicity 122000 [Hays et 
al., 1976] of the global climate variability during Pleistocene. The average time periodicity 121612.5 years 
[Simonenko, 2007; p. 146] of the evaluated range (116325÷126900) years is in good agreement with the 
empirical time periodicity 122000 years [Hays et al., 1976] of the global climate variability during 
Pleistocene.  The founded  [Simonenko, 2007; p. 138-150] main average time periodicities 94620 years, 
100845  years, 107568 years and 121612.5 years (determined by the combined cosmic non-stationary 
integral energy gravitational influence on the Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter 
[Simonenko, 2007] and the Sun owing to the gravitational interaction of the Sun with  the Jupiter) are in 
good agreement with the following empirical climate time periodicities: 94000 years [Hays et al., 1976], 
100000 years [Muller and MacDonald, 1995; p. 107-108; Pinxian et al., 2003; p. 2553], 106000 years [Hays 
et al., 1976] and 122000 years [Hays et al., 1976] during Pleistocene. The revealed time periodicity 100000 
years [Muller and MacDonald, 1995; p. 107-108] of the climate variability and the corresponding time 
variability of the carbon concentration in the Earth’s sedimentary rocks [Pinxian et al., 2003; p. 2553] 
confirms the founded cosmic energy gravitational genesis of the corresponding time periodicity 100845 
years  [Simonenko, 2007; p. 148] of recurrence of the maximal seismotectonic and volcanic activity and the 
global climate variability related with the atmospheric-oceanic warming (due to the greenhouse effect 
created by the periodic tectonic-volcanic activizations) produced by the cosmic non-stationary combined 
energy gravitational influence on the Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter 
[Simonenko, 2007] and the Sun owing to the gravitational interaction of the Sun with  the Jupiter.  

Using the presented (Table 2 in Subsection 3.6.4) calculated time periodicities of the Earth’s global 
climatic variability, we calculated [Simonenko, 2007] the average theoretical time periodicity 106160 years, 
which is in good agreement with the empirical time periodicity 106000 years corresponding to the main 
maximum of the spectrum [Hays, Imbrie and Shackleton, 1976] of the combined isotopic-oxygen variations 
based on the empirical data RC11 - 120 and E49 - 18. The calculated [Simonenko, 2007] average theoretical 
time periodicity 106160 years is in fairly good agreement with the empirical predominant time periodicity of 
105000 years [Gorbarenko et al., 2011] characterizing the Okhotsk Sea productivity and lithological proxies 
stacks during the last 350 kyr. These good agreement (of the independent experimental and theoretical 
studies [Hays, Imbrie and Shackleton, 1976;  Simonenko, 2007;  Gorbarenko et al., 2011] is the  additional 
confirmation of  the validity of the thermohydrogravidynamic theory [Simonenko, 2007; 2009; 2010] of the 
seismotectonic, volcanic and climatic evolution of the Earth.  
 The founded range (58162.5÷63450) years [Simonenko, 2007; p. 146] of the time periodicities of the 
global climate variability (determined by the combined cosmic non-stationary integral energy gravitational 
influence on the Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter [Simonenko, 2007] and the 
Sun owing to the gravitational interaction of the Sun with  the Jupiter) contains the revealed (during 
Pleistocene) empirical mean climate time periodicity 59000 years [Pletnev and Sukhanov, 2006; p. 701] 
based on the 210-m core in borehole near Honshu Island.  
 The stated hypothesis [Ilyichev and Cherepanov, 1991; p. 1371] about the recurrence of the super-
earthquakes characterized by the average approximate time periodicity of 10000 years was confirmed by the 
foundation of the additional (along with the mentioned above) global time periodicity (of the Earth’s periodic 
seismotectonic and volcanic activity and the global climate variability) 12540 years [Simonenko, 2007; p. 
136] of recurrence of the maximal seismotectonic and volcanic activity and the global climate variability 
determined by the combined cosmic non-stationary integral energy gravitational influence on the Earth of the 



system Sun-Moon, the Venus, the Mars, the Jupiter [Simonenko, 2007] and the Sun owing to the 
gravitational interaction of the Sun with  the Jupiter.  
 Establishing the predominant solar, planetary (the Venusian and the Jupiter’s) and the lunar energy 
gravitational influences on the Earth, we founded the cosmic energy gravitational genesis [Simonenko, 2007; 
2009] of the Chandler’s wobble  [Chandler, 1892; p. 97-107] of the Earth’s pole (and the detected 
oscillations [Vikulin, 2003; p. 76] of the boundary of the Pacific Ocean representing the seismic zone of the 
Pacific Ring) induced by the Sun (exciting the periodicity of 1 year) and the Venus, the Jupiter, the Moon 
and the Mercury (exciting the Chandler’s periods of 405-447.25 days [Simonenko, 2009; 2010, p. 105]).  
 Based on the founded cosmic geophysics [Simonenko, 2007; p. 93-155], we established the short-term 
and long-range time periodicities [Simonenko, 2007; 2009; 2010] of the seismotectonic and volcanic 
activizations, the climate variabilities and the variabilities of the fresh water resources and the glacial ice of 
the mountain, Arctic and Antarctic glaciers of the Earth owing to the fundamental energy gravitational 
influences of the Sun and the Moon, the Venus, the Mars and the Jupiter. The founded time periodicities 
[Simonenko, 2007; 124-150] of the seismotectonic activity were confirmed by the empirical time 
periodicities of the strong earthquakes worldwide during the long time period of the first and the second 
millenniums  [Abramov, 1997; Vikulin, 2003]. 
 Unfortunately, the predicted [Simonenko, 2007; p. 154-155] Chinese 2008 earthquakes had not been 
detected by means of the preventive precursors and natural warning omens owing to the violation of the 
natural seismotectonic and volcanic processes related with the realized Chinese underground nuclear 
explosions. The powerful 7.8-magnitude (on Richter scale) Sichuan 2008 earthquake with the epicenter in 
the Venchuan region was the largest destructive seismological cataclysm after 1949 and excels the Tangshan 
1976 earthquake. 

We established [Simonenko, 2007] the cosmic energy gravitational genesis of the strongest Japanese 
earthquakes [Vikulin, 2003] by revealing the satisfactory  correspondence of the empirical time periods of  
recurrence of the strongest Japanese earthquakes and the time periodicities determined by different Sun-
Moon and planetary combinations. Taking into account the time periodicity 83 years (of recurrence of the 
maximal energy gravitational  influences of the Jupiter on the Earth), the year 1927 AD of the Jupiter’s 
opposition with the Earth, the time periodicity 88 years (of recurrence of the maximal combined energy 
gravitational influences on the Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter [Simonenko, 
2007; 2009; 2010] and the Sun owing to the gravitational interaction of the Sun with  the Jupiter) and  the 
year 1923 AD of the last strongest Japanese earthquake in the Tokyo region, we founded  [Simonenko, 2009; 
2010] in advance the time range 2010 2011 AD (1927+83  ÷ ÷ 1923+88) of the next sufficiently strong 
Japanese earthquake near the Tokyo region. The previous independent prediction of the strong earthquake in 
2011 AD for the Kanto region was given by Prof. V.A. Abramov in 1997 AD [Abramov, 1997]. 

The powerful 6.6-magnitude (on Richter scale) Japanese earthquake (that occurred on March 14, 
2010) near Tokyo (with the epicenter in the Fukushima Prefecture) gets into the predicted time range 
2010 2011 AD [Simonenko, 2009; Simonenko, 2010]. The powerful 6.8-magnitude (on Richter scale) 
Japanese earthquake (that occurred on March 11, 2011) near Tokyo gets also into the predicted time range 
2010 2011 AD [Simonenko, 2009; Simonenko, 2010].  

 ÷

 ÷
The time periodicity 88 years (of the global seismotectonic and volcanic activity and the global 

climate variability related with recurrence of the maximal combined energy gravitational influences on the 
Earth of the system Sun-Moon, the Venus, the Mars, the Jupiter [Simonenko, 2007; 2009; 2010] and the Sun 
owing to the gravitational interaction of the Sun with  the Jupiter) is in good agreement with the estimated 
(based on the spectral Fourier analysis) climatic time periodicity 88 years [Kalugin and Darin, 2012] 
obtained from the studies of sediments from Siberian and Mongolian lakes. These good agreement (of the 
independent experimental and theoretical studies [Abramov, 1997; Simonenko, 2007; 2009; 2010;  Kalugin 
and Darin, 2012] is the  additional confirmation of  the validity of the thermohydrogravidynamic theory 
[Simonenko, 2007; 2009; 2010] of the seismotectonic, volcanic and climatic evolution of the Earth. 
 According to the cosmic geophysics [Simonenko, 2007; p. 93-155; 2009], the founded forthcoming 
range  [Simonenko, 2012] of the maximal seismotectonic, volcanic and climatic activities of 
the Earth (during the past years of the history of humankind) is related with the modern increase 
of the seismotectonic and volcanic activity [Abramov, 1997; Simonenko, 2007; 2009; 2010] and the global 
atmospheric-oceanic warming. This conclusion is consistent with the established [Keylis-Borok and 
Malinovskaya, 1964; p. 3019-3024] regularity related with the general increase of the seismotectonic activity 
before the strong earthquakes.  

AD 20612020 ÷
708696 ÷
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 The considered (in Subsection 3.8.4) events in the ancient history of the humankind show that the 
catastrophic droughts, great volcanic eruptions, the planetary disasters and  the super-earthquakes  in the 



history of the humankind are the climatic and geophysical mutually related links of the one evolutionary 
chain determined by the combined cosmic non-stationary energy gravitational influence on the Earth. We 
appeal to the world community to understand the modern increase of the seismotectonic and volcanic activity 
of the Earth, the global atmospheric-oceanic warming and the reduction of the Earth’s fresh water resources 
as the preventive precursors of the forthcoming super-earthquakes during the founded forthcoming range 

 [Simonenko, 2012] of the maximal seismotectonic, volcanic and climatic activities of the 
Earth during the past years of the history of humankind in the 21

AD 20612020 ÷
708696 ÷ st century. The first dangerous and 

destructive increased peak of the global seismotectonic and volcanic activities and the climate variability of 
the Earth is evaluated (in Subsection 3.9) during the forthcoming subrange                     

 (given by (3.314)).  AD 20262020 ÷
 The elites and governments of the Eurasian nations (ratified the CTBT) have the sufficient time to 
consider the possibility of the subsequent integration of the Eurasian nations before the first 
subrange  of the increased peak global seismotectonic and volcanic activities and the climate 
variability of the Earth in the 21

AD 20262020 ÷
st century. 

 
 
                                       

Inadmissibility of the nuclear explosions on the Eurasian continent during the founded 
 forthcoming range AD 20612020 ÷  of the maximal  seismotectonic,  

volcanic and climatic activities of the Earth in the 21st century  
 

 On December 6, 2006, General Assembly of the United Nations adopted a resolution underlining the 
necessity of the rapid signing and ratification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) 
accepted on the fiftieth Session of the United Nations General Assembly in 1996. Taking into account the 
modern increase of the seismotectonic and volcanic activity of the Earth, we founded the necessity 
[Simonenko, 2007; p. 155] of the total United Nations’ prohibition against the furthest underground nuclear 
explosions breaking the fragile [Ilyichev and Cherepanov, 1991; p. 1367] lithosphere of the Earth. It was 
conjectured [Simonenko, 2007; p. 155] that the new underground nuclear explosions on the Eurasian 
continent can lead to the initiation of the possible small global planetary cataclysm during the modern 
increase of the seismotectonic and volcanic activity of the Earth, when the fragile Earth’s crust (saturated by 
ample water penetrating through the tectonic fractures and cracks) is subjected to the very strong combined 
energy gravitational influence of the Solar System and our Galaxy. The new underground nuclear explosions 
may initiate the possible super-earthquakes characterized [Simonenko, 2007; p. 92] by the destructive 
slippage along the “Atlantiok” zone  [Abramov, 1997; p. 74] penetrating the Eurasian continent from the 
Japan Sea to the England and Iceland. The awakened world volcanoes and the recent strong destructive 
earthquakes occurred in China (2008), Italy (2009), Haiti (2010), Chile (2010), New Zealand (2010), and 
Japan (2011) confirmed the founded increase [Simonenko, 2007; p. 151] of the modern seismotectonic and 
volcanic activity of the Earth. The detected oscillations [Vikulin, 2003; p. 75-76] of the boundary of the 
Pacific Ocean and Alpine-Himalayas’ belt with the annual and Chandler’s periods are the natural forerunners 
of the most destructive consequences of the future small global planetary cataclysm in the seismic belts of 
the Pacific Ocean, the European and Asian regions. 
 It is clear that total United Nations prohibition and tough measures against the new nuclear explosions 
may be achieved only by facilitating the entry into force of the CTBT in the near future  before the first 
subrange  of the increased peak global seismotectonic and volcanic activities and the 
climate variability of the Earth in the 21

AD 20262020 ÷
st century.  The CTBT has so far been signed by 177 states and 

ratified by 138 countries. However, of the 44 states whose ratification is sufficient for the CTBT to go into 
force, 9 states have still not ratified the CTBT, including the Democratic People’s Republic of Korea, 
Indonesia, Iran, Israel, Egypt, Pakistan, India, China and the United States. If the world society cannot 
prevent the subsequent development of the military nuclear technologies and underground nuclear 
explosions on the Eurasian continent then it will lead to the chain reaction of proliferation of the military 
nuclear technologies in the world assisting to the initiation of the possible small global planetary cataclysm 
in the 21st century on the Eurasian continent. It is inadmissible risk for the United Nations to permit the 
subsequent proliferation and development of the military technologies of production of the nuclear weapon 
in the world. The new underground nuclear explosions (apart from the underground nuclear explosions 
realized in 2006 and 2009 by the Democratic People’s Republic of Korea) will increase the international 
political problems and will assist to the initiation of the possible small global planetary cataclysm in the 21st 
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century on the Eurasian continent. It is clear that the key to solution of the problem of non-proliferation of 
the military nuclear technologies and nuclear disarmament in the 21st century is related with a sequence of 
simultaneous combined ratifications: by the United States and China, by India and Pakistan, by Israel, Egypt 
and Iran, and one-sided ratifications: by Indonesia and by the Democratic People’s Republic of Korea. The 
survival of the Eurasian nations in the 21st century demands the final rapid ratification of the CTBT in the 
near future (before the first subrange AD 20262020 ÷  of the increased peak global seismotectonic and 
volcanic activities and the climate variability of the Earth in the 21st century) by means of the sequence of the 
following ratifications: by the Democratic People’s Republic of Korea; by Indonesia; by Iran, Israel and 
Egypt; by Pakistan and India; and by China and the United States.  
 The entry into force of the CTBT may be achieved only by the combined efforts of the political 
powers of the world community and especially by the combined efforts of the Russia (ratified the CTBT),  
Great Britain (ratified the CTBT), France (ratified the CTBT), the United States and China as the permanent 
representatives of the Security Council of the United Nations. The entry into force of the CTBT is one of the 
most essential preconditions for the survival of the Eurasian and world nations in the 21st century.  
 Taking into account the modern activization of the seismotectonic and volcanic activity of the Earth, 
the atmospheric-oceanic warming, the melting of the Arctic ice and the mountain glaciers and the reduction 
of the world fresh water resources, it is reasonably for the elites and governments of the Eurasian nations 
(ratified the CTBT) to discuss in advance (before the first subrange AD 20262020 ÷  of the increased peak 
global seismotectonic and volcanic activities and the climate variability of the Earth in the 21st century) the 
subsequent integration of the UE, Russia and others countries of the Commonwealth of Independent States 
(CIS) in the frame of the Eurasian Association (EAA) of the sovereign states facilitating the entry into force 
of the CTBT for the joint survival of the Eurasian nations on the Eurasian continent in the 21st century.  
 Instead of the political confrontation related with the senseless NATO’s eastward expansion in the 
modern historical period of the critical environmental seismotectonic, climatic and volcanic conditions on 
the Earth  [Simonenko, 2007; p. 149], the basic precondition of the survival of the UE’s, Russian and CIS’ 
nations (ratified the CTBT) is the rapid attainment of the favorable political conditions for joint practical 
actions intended for development of the extraordinary measures to diminish the destructive consequences 
during the founded forthcoming range AD 20612020 ÷  [Simonenko, 2012] of the maximal seismotectonic, 
volcanic and climatic activities of the Earth in the 21st century during the past years of the history 
of humankind. The additional (apart from the underground nuclear explosions realized by the Democratic 
People’s Republic of Korea in 2006 and 2009) underground nuclear explosions on the Eurasian can initiate 
the increased peak of the global seismotectonic and volcanic activities and the climate variability of the Earth 
before the first predicted (in Subsection 3.9) subrange

708696 ÷

AD 20262020 ÷  of the increased peak global 
seismotectonic and volcanic activities and the climate variability of the Earth in the 21st century.  
 In this regard, the more reasonable variant of the survival of the Eurasian and world nations in the 21st 
century is related with the final rapid ratification of the CTBT in the near future by the Eurasian states (the 
Democratic People’s Republic of Korea, Indonesia, Iran, Israel, Egypt, Pakistan, India and China) to not 
permit the new underground nuclear explosions, which may initiate the possible super-earthquakes on the 
Eurasian continent along the “Atlantiok” zone [Abramov, 1997; p. 74]  penetrating the Eurasian continent 
from the Japan Sea to the Eurasian continent and Iceland. 

 
 

Summary and conclusions 
 

We have considered the founded real cosmic seismotectonic, volcanic and climatic time periodicities 
[Simonenko, 2007; 2009; 2010; 2012] and impending threats [Simonenko, 2012] for the human existence on 
the Earth in the 21st century. Based on the founded global time periodicity (of the Earth’s periodic 
seismotectonic and volcanic activity and the global climate variability) 12540 years [Simonenko, 2007; p. 
136] of recurrence of the maximal seismotectonic and volcanic activity and the global climate variability of 
the Earth and using the obtained mean adequate estimation 10502.5 BC of the planetary disaster (10555 BC) 
in the Central Asia [Von Bunsen, 1848, pp. 77-78, 88] and the planetary disaster (10450 BC) in ancient 
Egyptian Kingdom [Hancock, 1997], we have evaluated (in Subsection 3.9) the probable date (of recurrence 
of the same  disaster) 2037.5  AD, which enter into the second obtained subrange    
(given by (3.318) in Subsection 3.9) of the increased peak global seismotectonic and volcanic activities and 
the climate variability of the Earth in the 21

AD38.204338.2037 ÷

st  century. We have conjectured (in Subsection 3.9) that the 
modern increase of the seismotectonic and volcanic activity of the Earth, the global atmospheric-oceanic 
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warming and the reduction of the Earth’s fresh water resources may be considered as the preventive 
precursors of the possible small global planetary cataclysms on the Eurasian continent during the founded 
forthcoming range  [Simonenko, 2012] of the maximal seismotectonic, volcanic and climatic 
activities of the Earth (and on the Eurasian continent) in the 21

AD 20612020 ÷
st century during the past years of 

the history of humankind.  
708696 ÷

 By considering the problem of the survival of the Eurasian nations in the 21st century, we have 
revealed the necessity of awareness of the community of interests of the Eurasian nations during the modern 
planetary seismotectonic and volcanic activization of the Earth before the forthcoming range AD 20612020 ÷  
[Simonenko, 2012] of the maximal seismotectonic, volcanic and climatic activities of the Earth. In this 
regard, it is reasonably to discuss by the elites and governments of the Eurasian nations (ratified the CTBT) 
the conditions for the subsequent integration of the Eurasian nations to facilitate the entry into force of the 
CTBT for the joint survival in the 21st century. The difficulties can be reduced if conscious efforts will be 
made by the governments of the Eurasian nations (ratified the CTBT) to stimulate the positive responses 
pointed to consolidation of the Eurasian nations. 
 In this regard, it is important for governments of the Eurasian nations to take conscious controlling 
policies appropriate for the modern increase of the seismotectonic and volcanic activity of the Earth, the 
global atmospheric-oceanic warming and the reduction of the Earth’s fresh water resources. In realization of 
this, good co-ordination is needed between the Eurasian governments. Governments of the Eurasian nations 
can develop ahead of time the extraordinary measures to diminish the destructive consequences during the 
founded forthcoming range  [Simonenko, 2012] of the maximal seismotectonic, volcanic and 
climatic activities of the Earth. The additional (apart from the underground nuclear explosions realized by 
the Democratic People’s Republic of Korea in 2006 and 2009) underground nuclear explosions on the 
Eurasian continent can initiate the very strong seismic activity before the first (evaluated in Subsection 3.9) 
dangerous and destructive increased peak 

AD 20612020 ÷

AD) 20262020 ( ÷  of the global seismotectonic and volcanic 
activities and the climate variability of the Earth. In determining geopolitical priorities of the Eurasian 
nations in the 21st century, governments of the Eurasian nations should re-examine the balance between the 
national political interests and the general human (and reasonable) strategy intended for the joint survival in 
the 21st century on the Eurasian continent. The more reasonable variant of the survival of the Eurasian 
nations in the 21st century can be realized by the final rapid ratification of the CTBT in the near future by the 
Democratic People’s Republic of Korea, Indonesia, Iran, Israel, Egypt, Pakistan, India and China. The 
security of life of the Eurasian nations in the 21st century rightly depends on the awareness of governments of 
the Eurasian states (still not ratified the CTBT) the conscious balance between of the own political interests 
and general political strategy for the joint survival of the Eurasian nations in the 21st century.  

The world economic crisis and the anticipations [Kupchan, 2003; Khannam, 2008; Starobin, 2009; 
Zakaria, 2009] of a return to multipolar world and the decline of American hegemonic dominance stimulated 
new doubts  [Stiglitz, 2010; Lelong and Cohen, 2010] about the capacities of the United States to provide the 
leadership for the global economic stability and advancement of the world. At the same time, the 
anticipations of the American decline have generated the reasonable skepticism [Ikenberry and Inoguchi, 
2010] argued by “the three global advantages of a large open market, the world’s reserve currency, and 
overwhelming military power with global reach”. The deep arguments were presented also [Norrlof, 2010] 
for continuing American hegemonic leadership. The development of new multipolar power centers, 
especially the rise of China [Jacques, 2009; Inoguchi, 2009] in Asia, requires the sufficient time for creation 
“new principles and logics – for the organization of regional and international order” [Ikenberry and 
Inoguchi, 2010]. In recent years of development of the new principles and logics of the new multipolar 
international order, some countries have attempted to create nuclear weapon.  

The Democratic People’s Republic of Korea (North Korea) was evaluated [Benard and Leaf, 2010] 
as the world’s most dangerous regime, which used the deep division (concerning to the assessment and the 
corresponding responses on the modern world’s threats related with proliferation of the weapons of mass 
destruction) between the permanent members (the United States, the United Kingdom, France, Russia and 
China) of the UN Security Council.  

The North Korea conducted the second underground nuclear explosion on 25 May 2009. This 
nuclear test was evaluated by the leaders of all democratic countries as the direct and reckless challenge for 
the international community to counter the subsequent proliferation of the weapons of mass destruction. 
Unfortunately, however, the reasonable recent efforts by the United States were failed in collecting of all 
permanent members of the UN Security Council for adequate UN’s measures against the North Korea. Now 
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the world community seeing the obvious intention of North Korea to develop in the near future the nuclear 
weapon.  

We see that the development of multipolarity reveals the obvious uncoordinated tendentious 
centrifugal intentions of the main multipolar power centers related with non-proliferation control. The 
subsequent development of the multipolarity will produce the additional structural complexity of the 
multipolar power centers to control the non-proliferation of the military nuclear technologies worldwide in 
the 21st century. Therefore, it is necessary to ratify the Comprehensive Nuclear-Test-Ban Treaty (CTBT) by 
the Eurasian states (still not ratified the CTBT) before the first predicted (in Subsection 3.9) 
subrange  of the increased peak global seismotectonic and volcanic activities and the climate 
variability of the Earth in the 21

AD 20262020 ÷
st century 

 The new underground nuclear explosions and the subsequent proliferation and development of the 
military technologies of production of the nuclear weapon in the world are disagree with the ethics of 
survival of the Eurasian nations in the 21st century.  
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Images recognition by multidimensional intervals 
G.Sh. Tsitsiashvili  

Распознавание образов с помощью многомерных интервалов 
Г.Ш. Цициашвили  

В работе [1] изложен алгоритм интервального распознавания образов. В случае единственного 
признака, характеризующего объекты первого из двух классов, строится минимальный отрезок для 
единственного признака, который включает в себя все объекты первого класса. Если каждый объект 
характеризуется несколькими признаками, строится многомерный отрезок, являющийся прямым 
произведением одномерных отрезков указанного типа. В качестве правила, распознающего новый 
объект как объект первого класса, полагается принадлежность признака (в многомерном случае - на-
бора признаков), характеризующего этот объект, к уже построенному одномерному (многомерному) 
отрезку. Преимуществом алгоритма интервального распознавания образов перед известными являет-
ся линейная по числу признаков и по числу объектов вычислительная сложность в его реализации. 
Этот алгоритм успешно применялся во многих задачах медицинской географии и экологии, в задачах 
метеорологии и рыболовства [2] – [9]. Он хорошо сработал, когда общее число объектов в обучаю-
щей выборке было порядка 20-30, а число признаков более 3.  

Однако применительно к задачам горного дела возникла ситуация, когда единственный при-
знак (несколько признаков), характеризующий объекты первого класса - проявления горного давле-
ния, не может прогнозироваться с помощью единственного отрезка. Иными словами есть проявления, 
имеющие предвестников, а есть проявления, которые не имеют предвестников. В этой ситуации 
единственный отрезок на множестве признаков уже не характеризует все проявления, пропуская те из 
них, накануне которых возникает явление так называемого молчания. В настоящей работе метод ин-
тервального распознавания учитывает особенности описанной ситуации. Он базируется на построе-
нии не одного отрезка или интервала, а нескольких непересекающихся интервалов, внутри которых 
на множестве признаков содержатся точки, характеризующие объекты первого класса. Тем самым 
объекты первого класса разбиваются на классы, для каждого из которых распознавание производится 
отдельно. Если исходная выборка на каждом шаге пополняется новым объектом, то тогда возникает 
последовательность классификаций объектов первого класса, которую можно характеризовать как 
иерархическую классификацию.  

Пусть первый класс объектов характеризуется набором вещественных чисел  

 
 

 
  много меньше . Пусть вещественные числа  удовлетворяют неравенству 

. Определим интервал  условием , если . Если же , то 
полагаем, что интервал  состоит из единственной точки  Построим следующее правило 
распознавания объекта  набора . Каждому числу  сопоставим два числа  
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В результате вокруг каждого числа  построен интервал  

Лемма 1. Если  то интервалы  либо совпа-
дают, либо не пересекаются. 
Доказательство. Пусть между точками  на вещественной оси нет точек набора  тогда 

по построению интервалы  совпадают. Наоборот, если меж-
ду точками  на вещественной оси имеются точки набора  тогда по построению интерва-

лы  не пересекаются. Таким образом, точки набора  раз-
биваются на классы (эквивалентности) по их принадлежности совпадающим интервалам. Лемма до-
казана. 

Предположим теперь, что множество  состоит из  объектов, причем каждый объект  ха-
рактеризуется l-мерным вектором  Аналогично считаем, что множество  состоит 

из  объектов, причем каждый объект  характеризуется l-мерным вектором . Оп-

ределим интервал  равенством 

 

�

По этим интервалам построим l-мерный интервал, являющийся их прямым произведением                        

 
Лемма. Если  то мерные интервалы 

 либо совпадают, либо не пересекаются. 
Доказательство. Действительно, по построению для любого  одномерные интерва-

лы  либо совпадают, либо не пересекаются. Если эти одно-
мерные интервалы при всех  совпадают, то совпадают и их прямые произведения 

. В противном случае хотя бы при одном  эти ин-
тервалы не пересекаются и значит не пересекаются их прямые произведения. Таким образом, вектора 
набора  разбиваются на подмножества (классы эквивалентности) по их принадлежности к совпа-
дающим мерным интервалам. Лемма доказана. 

Предположим теперь, что на вход нашей распознающей системы поступают -мерные вектора 
( , причем каждый из этих векторов принадлежит либо множеству , либо мно-
жеству  Пусть на шаге  в систему введено два мерных вектора 

 Предположим, что  - первый шаг, на котором 

огда строится первый -мерный интервал, содержащий 

 
Далее пусть на шаге  вектор  не принадлежит ни од-

ному из уже построенных интервалов, то система этих интервалов сохраняется. Если же 
) принадлежит одному из уже существующих интервалов, то тогда этот ин-
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тервал разбивается на подинтервалы по известному правилу. Пусть теперь на шаге  вектор 

огда если он не принадлежит ни одному из уже построенных интервалов, то 
строится новый интервал, содержащий этот вектор. В противном случае система интервалов на дан-
ном шаге сохраняется. 
Замечание. В результате такого построения на шаге образуется либо новый интервал, со-
держащий ), либо вектор ) попадает в одну из ком-
понент разбиения. Тем самым данные вектора подчиняются описанной выше иерархической класси-
фикации. 
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We present the analysis of the air temperature T(t) dynamics for the considered stations and for 
different months. By using the method of the smallest squares, we evaluate the coefficients a,b of the linear 
mean temperature dependences τ(t)=at+b and fluctuations 
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1 ( ( ) ( ))
n

t

s T t
n

τ
=

= −∑ t , 

where n is the period of observation.  We consider the ratio a/s characterizing the mean dependences and 
then select the stations and months for large and small ratio a/s. We analyze then the temperature oscillations 
for different extreme situations: the small values of a/s (Table 1) and the large values of a/s (Table 2). The 
analyzed (in Tables 1 and 2) time periodicities were evaluated ([1], p. 227) by taking into account the 
following cosmic factors: a) the Earth’s tectonic-endogenous heating ([1], p. 149) related with the periodic 
continuum deformation induced by the cosmic non-stationary energy gravitational influences on the Earth in 
the frame of the generalized differential formulation of the first law of thermodynamics  ([1], p. 23), b) the 
Earth’s atmospheric-oceanic warming ([1], p. 149)  (as a consequence of the natural greenhouse effect) 
produced by the gravity-induced periodic tectonic-volcanic activization accompanied by the increase of the 
atmospheric greenhouse gases concentration.   

Based on the thermohydrogravidynamic theory, it was founded ([1], pp. 135-136) the recurrence of the 
maximal combined energy gravitational influences on the Earth of the Sun, the Moon and the Venus 
characterized by the time periodicity near 3 years (in the first approximation), that must lead (by taking into 
account the factor b) to the strong mean temperature time dependences characterized by the same time 
periodicity near 3 years. 

Based on the experimental data about the range of the Chandler’s periods (of the Chandler’s wobble of 
the Earth’s pole) during the time range 1970-1991, it was founded the statistical average time periodicity 
4.91 years (of the maximal combined energy gravitational influence on the Earth of the Mercury, the Venus 
and the Moon) which must give (as a consequence of the factor b) the time periodicity near 5 years of the 
global temperature variability during 1970-1991. The time periodicity 6 years was founded ([1], p. 109) as a 
consequence of the Earth’s tectonic-endogenous heating induced by the combined energy gravitational 
influences on the Earth of the Mercury, the Moon and the Jupiter (taking into account the factor a). the time 
periodicity 6 years was also founded ([1], p. 112)  as a consequence of the combined energy gravitational 
influences (the factor b) of the Mercury, the Venus and the Moon on the Earth (in the second 
approximation). It was shown ([1], p. 113) the recurrence of the maximal combined energy gravitational 
influences on the Earth of the Mercury, the Venus and the Moon has the time periodicity 7 years (in the third 
approximation), that must lead to (by taking into account the factor b) to the strong mean temperature time 
dependences characterized by the same time periodicity of 7 years.  

Based on the thermohydrogravidynamic theory, it was founded ([1], p. 109) the short-term time 
periodicity near 12 years (in the first approximation) of intensification of the Chandler’s wobble of the 
Earth’s pole and related Earth’s periodic seismotectonic (and volcanic) activity and the global climate 
variability (as a consequence of the factor b) induced by the combined non-stationary energy gravitational 
influence on the Earth of the Mercury, the Moon and the Jupiter. 

Based on the thermohydrogravidynamic theory, it was founded ([1], p. 226) the total range 
11 13.008  years   of the time periodicities of the solar activity induced by the  combined energy 
gravitational influences on the Sun of the Jupiter, the Mercury, the Venus, the Earth and the Mars. 

÷ 

We calculated [2]  (Tables 1, 2)  the Fourier coefficients of the differences T(t) - τ(t) during the time 
range 1980-2009 for the considered periodicities 2, 3, 5, 6, 7, 10 years. We also calculate the mean value of 
the marked coefficients (which are larger than the critical value 0.15) for each time periodicity.  

The presented analysis of the reveled [2] time ranges and distinct time periodicities of the temperature 
variations of the atmosphere and hydrosphere of the Earth confirm the hypothesis about the predominant 
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time periodicities 5 years and 6 years (for obvious multimodal character of highly fluctuating time 
temperature dependences) and 7 years (for small multimodal character related with strong mean temperature 
dependences). The present study gives the confirmation of this   hypothesis based on the data about the air 
temperature fluctuations for stations of the Far East during the time range 1980-2009. 

But now it is interesting to analyze how errors of linear trend calculations influence on Fourier 
coefficients. For this aim we suggest and then use modified method of the coefficients calculation. It is based 
on the following considerations. Suppose that the function x(t) is defined in integer points t=1,…,T+m+1: 
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where i is the imaginary unit. Calculate Fourier coefficients k kc r ijk= +  and their absolute values 
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Analogously suppose that the function x(t) is defined in integer points t=1,…,T+m+1: 
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where  are independent random variables with ( ), 1,..., 1,t t T mε = + + 2( ) 0, ( ) .M t D tε = ε = σ  We are to 

estimate the parameter  It is obvious that 2.σ
1 1( ) ( )m mx t t+ +∆ = ∆ ε  

where 
1 1

1 1
0

( ) ( )  ( 1) ,
m m k k

m m
k

t t k C
+ + −

+ +
=

∆ ε = ε + −∑  

consequently 
12 2

1 1 1 1
0

( ) 0, ( ) , ( )  
m k

m m m m
k

M t D t F F C
+

+ + + +
=

∆ ε = ∆ ε = σ = ∑ 1m +
 

 
and so almost surely 
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Table 1. Fourier coefficients (calculated by modified method) of the deviation T(t) - τ(t) for the time 
periodicities 2, 3, 5, 6, 7, 10, 11, 12 years for the small values of a/s. 
 
Table 2. Fourier coefficients (calculated by modified method) of the deviation T(t) - τ(t) for the time 
periodicities 2, 3, 5, 6, 7, 10, 11, 12  years for the large values of a/s. 

  Time periodicities   Stations,  
Months  2 3 5 6 7 10 11 12 

Nemuro, Apr. 0,200 0,192 0,100 0,189 0,039 0,049 0,128 0,187
Nemuro, May 0,078 0,218 0,045 0,149 0,327 0,149 0,110 0,081
Abashiri, July 0,055 0,070 0,331 0,250 0,084 0,086 0,357 0,391

Asahikawa, July 0,153 0,104 0,244 0,323 0,135 0,098 0,185 0,321
Wakkanai, July 0,122 0,058 0,396 0,197 0,018 0,098 0,510 0,261

Suttsu, July 0,222 0,215 0,105 0,318 0,026 0,085 0,183 0,323
Taejon, July 0,069 0,143 0,204 0,189 0,128 0,082 0,170 0,168

Aomori, Aug. 0,294 0,283 0,691 0,597 0,291 0,562 0,109 0,220
Asahikawa, Aug. 0,291 0,301 0,635 0,585 0,297 0,474 0,127 0,240

Sapporo, Aug 0,252 0,281 0,585 0,551 0,344 0,327 0,113 0,224
Suttsu, Aug. 0,356 0,273 0,593 0,573 0,339 0,243 0,059 0,213

Urakava, Aug. 0,328 0,375 0,612 0,564 0,357 0,358 0,098 0,189
Hakodate, Aug 0,200 0,192 0,100 0,189 0,039 0,049 0,128 0,187

 
 

We also calculate the mean value of the marked coefficients (which are larger than the critical value 
0.285) for each time periodicity.  

Time periodicities   Stations,  
Months  2 3 5 6 7 10 11 12 

Taejon, Jan. 0,711 0,244 0,288 0,132 0,123 0,154 0,143 0,183
Izuhara, Feb. 0,319 0,118 0,056 0,104 0,361 0,045 0,479 0,249

Kagoshima, Feb 0,225 0,283 0,062 0,107 0,559 0,059 0,605 0,075
Abashiri, Mar. 0,180 0,257 0,127 0,075 0,196 0,034 0,159 0,243

Tokio, Mar. 0,160 0,444 0,047 0,408 0,156 0,078 0,059 0,148
Kagoshima, Aug 0,045 0,142 0,046 0,069 0,096 0,063 0,194 0,030

Vlad-k, Sep. 0,166 0,078 0,065 0,100 0,018 0,017 0,163 0,083
Kagoshima, Sep. 0,180 0,101 0,176 0,183 0,172 0,062 0,167 0,047
Izuhara, Oсt. 0,051 0,158 0,263 0,120 0,107 0,091 0,286 0,137

Fukuoka, Oсt. 0,032 0,152 0,266 0,041 0,010 0,039 0,128 0,121
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Consequently modified method decreases values of Fourier coefficients for small periods and so large 
periods with 12, 11, 10, 7, 6, 5 years become more important. It is interesting to say that the marked 
periodicities are not enough to obtain pikes at the curve of temperature dynamics. 

The authors thank S.V. Simonenko for his suggestion to include periods 11, 12 years into our research. 
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