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Abstract—The induction seismomagnetic effects arising in the seismic wave motion in the con-
stant Earth’s magnetic field are numerically studied in this article. The phenomenon is described as
a simultaneous solution of the system of elastic equations and quasi-stationary Maxwell’s equations
with displacement velocity components. For solving the problem, we use numerical-analytical algo-
rithm based on the finite Fourie transform. The obtained system of ordinary differential equations is
solved by the factorization method.
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1. INTRODUCTION

It is known that when a conductive wire frame is moving in a constant magnetic field, an electric

current and a variable magnetic field are generated in the frame.

Similar phenomena can be observed when a seismic wave propagates in the Earth’s constant

magnetic field. The seismic wave, with its forward and back wave fronts is analogous to the wire

frame. A conductive medium between the forward and the back wave vibrates in the Earth’s

constant magnetic field, which brings about local geomagnetic variations. Local geomagnetic vari-

ations, propagating simultaneously with the seismic wave diffusing into the medium are termed

seismomagnetic waves. These waves contain information about both electromagnetic and elastic

parameters of a medium.

The electromagnetic wave rides the “back” of the seismic wave, that is, the induced electro-

magnetic wave is “frozen” into the seismic wave and propagates either with P - or with S-seismic

wave velocity, depending on the type of waves. The dominant frequency and the velocity of the

induced seismomagnetic wave is equal to the frequency and velocity of the seismic wave.

Lately, some attempts have been made to measure and implement the electrical currents gener-

ated by seismic waves and to develop methods of electroseismic prospecting [1]. The electroseismic

approach is different from the seismomagnetic method. Whereas the electroseismic effect results

from a local effect of the seismic wave interactions with the interface between elastic media and

shallow layers of subsurface fluids, the seismomagnetic effect is based on the interaction of seismic
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waves with the Earth’s magnetic field. The result of such an interaction is the induced electro-

magnetic wave which propagates with the seismic wave, but not with the light speed, as in the

case of the electroseismic effect.

The results (see [2,3]) indicate to the simultaneous propagation of the seismic wave together

with the induced geomagnetic variation, and to the fact that it is possible to record the geomag-

netic variation.

2. MATHEMATICAL MODEL FOR SEISMOMAGNETIC EFFECT

The phenomenon of the seismomagnetic effect caused by an explosion in an elastic medium is

described as a simultaneous solution of the self-consistent system of elastic equations with the

Lorenz force and quasi-stationary Maxwell’s equations with displacement velocity components.

The first paper in this area was by Knopoff [4], who concluded that the Earth’s magnetic field

weakly affects the wave propagation velocity; however, Knopoff did not study seismomagnetic

waves. The theory of the interaction of elastic and magnetic fields proposed by Knopoff was

further developed in the solid state physics. At present, a new 1 area of research of the magneto-

elasticity theory is gaining more importance [5]. We use the system of equations derived by

Novacki

V 2
p grad divU − V 2

s rot rotU =
∂2U

∂t2
+ F , (1)

∂h

∂t
= rot

(
∂U

∂t
×H0

)
+ β∆h, (2)

divh = 0. (3)

For the vacuum z < 0,

∆h = 0. (4)

Components of the seismoelectric field can be found from the following equations:

E = σ−1roth− µ0
∂U

∂t
×H0, (5)

for the vacuum z < 0:

rotE = −µ0
∂h

∂t
. (6)

Here U is the displacement vector of the elastic medium, and H0 is the strength vector of the

Earth’s magnetic field.

Local geomagnetic variations of the magnetic field induced into the medium due to the seismic

wave propagation can be represented as H0 ± h, where h is assumed to be small as compared

to H0. Velocities of longitudinal Vp- and transverse Vs-waves, density ρ, and conductivity σ are

assumed to be constant within each layer. Magnetic permeability µ0 is assumed constant for all

the layers.

The continuity conditions should be satisfied for the displacement components, strengths τxz,

τyz, τzz of the elastic medium and magnetic field components, tangent components of the electrical

field for the contact boundary for any two layers.

On the boundary with vacuum for z = 0, the strength τxz = 0, τyz = 0, τzz = 0, magnetic

field components and the normal component of the electrical field are continuous. At the infinity,

movement is absent. The source of the seismic wave

F = f(t)

[
Mij

∂δ (x− x0)

∂xj
+ F0δ (x− x0)

]
, (7)

where x = (x, y, z), Mi,j are the components of seismic moment, f(t) is Puzyrerv’s impulse:

f(t) = exp

[
−2πω0 (t− t0)2

γ2

]
sin (2πω0 (t− t0)) ,

F0 is vector of the force.
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3. NUMERICAL METHOD

To solve the system of equations (1)–(4), we will make use of the earlier developed numerical-

analytical algorithms [6] employing the finite Fourier transform along the coordinates x, y, t. The

obtained system of ordinary equations is the following:
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d2hx
dz2

− τ2hx =
iω

β

[
H0x

(
duz
dz

+ ikyuy

)
−H0yikyux −H0z

dux
dz

]
,

d2hy
dz2

− τ2hy =
iω

β

[
−H0xikxuy +H0y

(
duz
dz

+ ikxux

)
−H0z

duy
dz

]
,

d2hz
dz2

− τ2hz =
iω

β
[−H0xikxuz −H0yikyuz +H0z (ikxux + ikyuy)] ,

(9)

where τ2 = k2
x + k2

y + iω/β. The source ~F from the right-hand side of equations (10) is carried

over to the point z = z0 by the standard technique.

The solution of equations (11) we find in the form

hx = Cj1le
τjz + Cj2le

−τjz + ϕjl , l = x, y, z, (10)

where j is a number of the layer. If the partial solutions ϕx, ϕy, ϕz of equations (11) are known,

we can find constants Cj using the well-known (for such problems) recurrent formulas taking

into account the boundary conditions and conjugation conditions for layers. It is more difficult

to define the partial solution of equations (11) as the difficulties of construction of the analytical

solution in every layer of the elastic theory equations by matrix methods are well known. For

solving equations (10), we used the factorization method [6]. Here we introduce the potentials

ux = ikxw1 +
dw2

dz
,

uy = ikyw1 +
dw3

dz
,

uz = −ikxw2 − ikyw3 +
dw1

dz
.

Then from (10),
d2w1

dz
= R2w1,

d2w2

dz
= S2w2,

d2w3

dz
= S2w3, (11)

where R2 = k2
x + k2

y − w2/V 2
p , S2 = k2

x + k2
y − w2/V 2

s .

Following [6], we introduce a new unknown matrix of the functions A

dw

dz
= Aw. (12)

Provided that (14) identically satisfies the equations in potentials (13), we obtain Riccati’s

matrix equations for determining aij in each layer. Riccati’s equation admits an analytical

solution in the closed form. In its final form, the algorithm is as follows. First, we perform the

same procedure of calculating aij from above up to the point z = z0, where the source is located,
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using the conjugation conditions between layers and Riccati’s equations. Then this procedure is

repeated from the bottom upwards. Taking into account the conditions in the source, we obtain

values of potentials in each layer. If we present the prototypes of displacements in the form

ul = Cj3le
Rjz + Cj4le

−Rjz + Cj5le
Sjz + Cj6le

−Sjz, l = x, y, z. (13)

We will be able to find the constant Cjil in each layer and to construct the partial solution for

equations (11). Note, this approach has no computational restrictions when doing calculations

with high frequencies.

4. SOME RESULTS OF NUMERICAL MODELING
OF SEISMOMAGNETIC WAVE

Consider some dynamic features of seismomagnetic waves. Each kind of the seismic wave gen-

erates an electromagnetic wave associated with it and propagating with the same velocity. The

electromagnetic wave generated by a seismic wave of a given kind we call the seismomagnetic wave

of the same kind (e.g., Rayleigh seismomagnetic wave, longitudinal seismomagnetic wave, trans-

verse seismomagnetic wave, etc.). As compared to the longitudinal wave the seismomagnetic wave

is transverse, as any other electromagnetic wave. However, the longitudinal seismomagnetic wave

propagates with longitudinal seismic wave velocity. Basic dynamic features of seismomagnetic

waves for homogeneous elastic media were considered in [7]. Further, we convert components of

both seismic and seismomagnetic fields from x, y, z to the spherical coordinate system for strati-

fied elastic media. We transformed all the components into dimensionless units. We divided the

components of the seismomagnetic field by the maximum amplitude of all its components and

the components of seismic field by the maximum amplitude of all its components.

Figure 1.

Figure 1 shows radial, tangential components of the displacement of the elastic wave at the

point r0 = 3λ, where λ is the dominant P -wavelength in the elastic medium and the radial,

tangential components of seismomagnetic field at the same point for different angles θ̂; θ̂ is the

angle between the strength vector of the Earth’s magnetic field H0 and the vertical axis z. The

elastic model is used with an explosive point source near z = 0, for this case transverse components

of all waves are equal to zero. Parameters of the model are the following: Vp1 = 1000 m/s,

Vp2 = 2000 m/s, Vsi = Vpi/1.73, i = 1, 2, the depth of layer h = λ, strength of geomagnetic field

H0 = 40 A/m, conductivity σ = 0.01 Cm/m. The figure shows that the phase and first arrivals

of geomagnetic variations coincide with the analogous characteristics of the seismic waves. The

first wave is the longitudinal wave P , the second wave is the Rayleigh wave, and the third wave

is a wave reflected from the boundary of the layer. The radial and tangential components of P -
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Figure 2.

and the Rayleigh seismomagnetic waves have the same circular polarization. The amplitude of

P -seismomagnetic wave decreases with the increase of the angle θ̂, while the amplitude of the

Rayleigh wave increases.

Figure 2 shows the radial, tangential, transverse components of elastic displacements and seis-

momagnetic waves. The elastic model and its parameters are the same as in Figure 1. The point

source located near z = 0 is the source of the horizontal force type. In this case, we have radial,

tangential, and transverse components of all waves. The amplitude of P -seismomagnetic wave

decreases with the increase of the angle θ̂, while the amplitude of the Rayleigh wave increases.
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