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Abstract. A theory of resonant conversion of fast magne-
tosonic (FMS) waves into slow magnetosonic (SMS) oscilla-
tions in a magnetosphere with dipole-like magnetic field has
been constructed. Monochromatic FMS waves are shown to
drive standing (along magnetic field lines) SMS oscillations,
narrowly localized across magnetic shells. The longitudi-
nal and transverse structures, as well as spectrum of reso-
nant SMS waves are determined. Frequencies of fundamen-
tal harmonics of standing SMS waves lie in the range of 0.1–
1 mHz, and are about two orders of magnitude lower than
frequencies of similar Alfv́en field line resonance harmon-
ics. This difference makes an effective interaction between
these MHD modes impossible. The amplitude of SMS oscil-
lations rapidly decreases along the field lines from the mag-
netospheric equator towards the ionosphere. In this context,
magnetospheric SMS oscillations cannot be observed on the
ground, and the ionosphere does not play any role either in
their generation or dissipation. The theory developed can be
used to interpret the occurrence of compressional Pc5 waves
in a quiet magnetosphere with a weak ring current.

Keywords. Ionosphere (Wave propagation) – Magneto-
spheric physics (Magnetosphere-ionosphere interactions;
MHD waves and instabilities)

1 Introduction

In studies of magnetospheric MHD oscillations, one of the
most productive ideas was the theory of field line resonance.
Having appeared for the first time in Tamao (1965), this
theory was later developed by Chen and Hasegawa (1974),
Radoski (1974), and Southwood (1974). This theory de-
scribes resonant driving of Alfv́en field line oscillations by a
monochromatic fast magnetosonic (FMS, or compressional)
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wave. The interaction between these modes is confined in a
narrow range of magnetic shells, where a local frequency of
Alfv én eigenoscillations is close to FMS wave frequency.

The field line resonance theory was first developed for
a one-dimensional inhomogeneous model of the magneto-
sphere, where the magnetic field lines are assumed to be
straight, and plasma inhomogeneity is directed across the
field lines. This theory was later advanced for magnetosphere
models with plasma inhomogeneous, both along magnetic
field lines and across magnetic shells with either straight
magnetic field lines (Kivelson and Southwood, 1986; South-
wood and Kivelson, 1986) or a dipole-like magnetic field
(Lifshitz and Fedorov, 1986; Leonovich and Mazur 1989;
Chen and Cowley, 1989; Wright, 1992).

In a plasma with finite pressure there is another branch
of MHD oscillations – the slow magnetosonic (SMS) mode.
SMS waves are in many aspects similar to Alfvén waves:
both modes are guided by magnetic field lines and have con-
tinuous spectra (Lifshitz and Fedorov, 1986). Many authors
(e.g. Southwood, 1977; Walker, 1987; Taylor and Walker,
1987; Walker and Pekrides, 1996) examined the coupling of
a small-scale (large azimuthal wave numbers,m�1) Alfv én
mode with SMS mode in a finite-pressure plasma embedded
in curvilinear magnetic field. These theories were aimed at
understanding the physics of compressional Pc5 waves per-
sistently observed by space-borne magnetometers (Barfield
and McPherron, 1978; Woch et al., 1990). Various kinds of
instabilities of ring current ions were suggested as a possi-
ble excitation mechanism for these waves (Pokhotelov et al.,
1986; Cheng and Lin, 1987; Cheng et al., 1994). These theo-
ries are relevant to the storm-time periods, when the intensity
of the ring current is high enough and effective magnetosonic
velocity of energetic particles is about the Alfvén velocity
of background plasma. However, some compressional Pc5
waves were observed under very weak ring current (Dst∼0)
(Greene et al., 2005), so probably they are excited by an-
other, still unidentified, mechanism. Those Pc5 oscillations
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Fig. 1. The curvilinear orthogonal coordinate system (x1, x2, x3) of
the magnetic field lines and the non-orthogonal coordinate system
(a, φ, θ) used in numerical calculations.

cannot be merely monochromatic FMS waves, because for
such waves the magnetosphere is an opacity region, and their
amplitude should decrease exponentially upon penetration
into the inner magnetosphere at a much smaller scale than its
typical size. Klimushkin (1997) suggested that ionospheric
currents could be a source of magnetospheric SMS waves.
However, as will be shown in this paper, the efficiency of
such a generation mechanism is doubtful.

The similarity between the Alfv́en and SMS modes sug-
gests that SMS oscillations could be generated through
a mode conversion similar to the Alfvén field line reso-
nance, as was demonstrated by Yumoto (1985) within a one-
dimensional plasma model. The processes of resonant con-
version of FMS disturbances into Alfvén or SMS oscillations
may be termed the Alfv́en and magnetosonic resonances, re-
spectively. During the magnetosonic resonance, monochro-
matic FMS waves excite SMS oscillations at those magnetic
shells where the FMS wave frequency coincides with the lo-
cal frequency of SMS eigenoscillations.

In this paper we develop the theory of magnetosonic reso-
nance in a two-dimensional inhomogeneous magnetosphere
model with dipole-like magnetic field. Distributions of the
main plasma parameters in this model correspond to the
mildly disturbed dayside magnetosphere of the Earth. Un-
der these conditions, the typical frequencies of Alfvén and
SMS oscillations differ by about two orders of magnitude,
so interaction between these modes is very weak, in contrast
to the models of the ring current plasma (e.g. Walker, 1987;
Taylor and Walker, 1987; Walker and Pekrides, 1996).

The paper is organized as follows. In Sect. 2, we intro-
duce a model of the medium and the basic equations describ-
ing the magnetosonic resonance. In Sect. 3, the ionospheric
boundary conditions are inferred for the resonant SMS os-

cillations. In Sects. 4 and 5, we find solutions in the WKB
approximation to equations describing the structure of res-
onant SMS oscillations along and across the magnetic field
lines. In Sect. 6, analytical equations are obtained represent-
ing the components of the field of resonant SMS waves in
the resonant region. In Sect. 7, we solve numerically the
equations describing the structure and spectrum of three first
harmonics of resonant standing SMS oscillations, and com-
pare the spatial structures of Alfvén and magnetosonic reso-
nances. Finally, in the Discussion and Conclusion sections,
we summarize the principal results and discuss possible ver-
ification of the proposed theory.

2 The model and the basic equations

We consider coupled MHD oscillations in a magnetosphere
model with a dipole-like magnetic field (Fig. 1). We intro-
duce a curvilinear orthogonal coordinate system (x1, x2, x3)
of the magnetic field lines, in which the coordinatex3 is ori-
ented along the field line,x1 is directed across the magnetic
shells, and the azimuthalx2 coordinate completes the right-
hand coordinate system. The squared length element in this
coordinate system is determined as

ds2
= g1(dx

1)2 + g2(dx
2)2 + g3(dx

3)2,

wheregi(i=1, 2, 3) are metric coefficients. We assume that
the plasma and magnetic field are homogeneous along the
azimuthal coordinatex2. We employ the system of MHD
equations for an ideal plasma with a finite isotropic pressure:

ρ
dv
dt

= −∇P +
1

4π
[curlB × B], (1)

∂B
∂t

= curl[v × B], (2)

∂ρ

∂t
+ ∇(ρv) = 0, (3)

d

dt

P

ργ
= 0, (4)

whereB andv are the magnetic field and plasma velocity,
ρ andP are the plasma density and pressure, andγ is the
adiabatic index.

Application of the ideal MHD approximation is well jus-
tified for oscillations in collisional plasma. The magneto-
spheric plasma is more likely to be collisionless for the os-
cillations under study. To fully examine the oscillations in
such a medium, one should use the kinetic theory. However,
the kinetic theory of MHD oscillations in two- and three-
dimensional inhomogeneous plasma is too complex and does
not always allow for rigorous solutions of the resulting equa-
tions. For our purpose – to examine the structure of MHD os-
cillations in an inhomogeneous medium – the MHD approx-
imation is usually applied, with some reservations. The sub-
stantiation of its applicability in this case is the CGL (Chew-
Goldberg-Low) theory for oscillations in magnetized plasma
(Chew et al., 1956).
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To determine the oscillatory electric fieldE we use the
frozen-in condition

E = −
[v × B]

c
.

In a stationary condition (∂/∂t=0), the system (1–4) de-
scribes the distribution of the parameters of an unperturbed
magnetosphere:B0, v0, E0, ρ0, andP0. We assume that
the background plasma flow is absent, sov0=0, andE0=0.
Let us linearize the system (1–4) with respect to small per-
turbations as follows:B=B0+B̃, v=ṽ, E=Ẽ, ρ=ρ0+ρ̃,
and P=P0+P̃ , where theB̃, ṽ, Ẽ, ρ̃, and P̃ are related
to MHD oscillations. Each of the perturbed components
can be represented as harmonics of the Fourier expansion
∝ exp(ik2x

2
−iωt), whereω is the oscillation frequency, and

k2 is the azimuthal wave number (ifx2
=φ is the azimuth an-

gle, thenk2=m=1, 2, 3...). From Eq. (1) we have

−iωρ0v1 = −∇1P̃ +
B0

4π

1
√
g3
(∇3B1 − ∇1B3), (5)

−iωρ0v2 = −ik2P̃ −
B0

4π

1
√
g3
(ik2B3 − ∇3B2), (6)

iωρ0v3 = ∇3P̃ , (7)

where vi , and Bi (i=1, 2, 3) are the covariant compo-
nents of the perturbed velocitỹv and magnetic field̃B, and
∇i≡∂/∂x

i . From Eqs. (3), (4) we obtain

P̃ = −i
γ

ω

P 1−σ
0
√
g

[
∇1

(√
g

g1
P σ0 v1

)
+

ik2

√
g

g2
P σ0 v2 + ∇3

(√
g

g3
P σ0 v3

)]
,

whereg=
√
g1g2g3, andσ=1/γ .

It is convenient to describe the MHD field componentsB̃,
ṽ, Ẽ, ρ̃, andP̃ via electromagnetic potentials. According to
the Helmholtz expansion theorem (Korn and Korn, 1968), an
arbitrary vector field, at any point of which its first derivative
is determined, can be represented as a sum of potential and
vortex fields. For the two-dimensional vectorẼ=(E1, E2, 0)
this expansion has the form

Ẽ = −∇⊥ϕ + [∇⊥, 9],

where∇⊥≡(∇1,∇2) is the transverse 2-dimensional Lapla-
cian, ϕ and 9 are the scalar and vector potentials, re-
spectively. Under proper gauge calibration, the vector po-
tential has only a longitudinal (field-aligned) component,
9=(0,0, ψ3 ≡ ψ). Using the linearized system (1–4) we
express the perturbed field components through the poten-
tialsϕ andψ as

E1 = −∇1ϕ + ik2ψ, E2 = −ik2ϕ − ∇1ψ, E3 = 0, (8)

B1 =
c

ω

g1
√
g

∇3

(
k2ϕ − i

g2
√
g

∇1ψ

)
,

B2 =
c

ω

g2
√
g

∇3

(
i∇1ϕ + k2

g1
√
g
ψ

)
,

B3 = i
c

ω

g3
√
g

(
∇1

g2
√
g

∇1ψ − k2
2
g1
√
g
ψ

)
, (9)

v1 = −
cp−1

B0

(
ik2ϕ +

g2
√
g

∇1ψ

)
,

v2 =
cp

B0

(
∇1ϕ − ik2

g1
√
g
ψ

)
, v3 = −i

∇3P̃

ωρ0
. (10)

The perturbed pressure is described by the following equa-
tion

L̂0P̃ = iγ
c

ω

P 1−σ
0
√
g

[
ik2ϕ∇1

√
g3P

σ
0

B0
+

∇1
pP σ0

B0
∇1ψ − k2

2
p−1P σ0

B0
ψ

]
,(11)

wherep=
√
g2/g1, and the operator̂L0 is

L̂0 =
γ

ω2

P 1−σ
0
√
g

∇3

√
g

g3

P σ0

ρ0
∇3 + 1.

Let us multiply Eq. (5) by ik2B0/ρ0, and Eq. (6) by B0/ρ0,
then differentiate the latter with respect tox1, and subtract
the obtained equations one from another. As a result we ob-
tain

∇1L̂T∇1ϕ − k2
2

(
L̂Pϕ+

S2

A2

ϕ
√
g1g2

∇1 lnB0∇1 ln
√
g3P

σ
0

B0

)
=

i
k2

ω

(
∇1L̂T

g1
√
g
ψ − L̂P

g2
√
g

∇1ψ

)
. (12)

Here S and A denote characteristic plasma velocities:
S=

√
γP0/ρ0 is the sound velocity, andA=B0/

√
4πρ0 is the

Alfv én velocity. We have introduced in Eq. (12) the toroidal
L̂T and poloidal̂LP longitudinal operators, as follows

L̂T =
1

√
g3

∇3
p

√
g3

∇3 + p
ω2

A2
,

L̂P =
1

√
g3

∇3
p−1

√
g3

∇3 + p−1ω
2

A2
.

Now we derive an equation for the magnetosonic mode
characterized by the potentialψ . For this purpose we apply
the operator̂L0 to Eq. (6) and substitute in the obtained equa-
tion the components of perturbed field via potentials from
Eq. (8). After some rearranging of the terms we have

B0
√
g3

4πρ0
L̂0

B0
√
g3
1̃ψ + S21ψ + ω2ψ =

−i
B0

√
g3

4πk2ρ0
L̂0B0L̂T∇1ϕ − iϕk2S

2 g3
√
g

∇1 ln
√
g3P

σ
0

B0
, (13)
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Fig. 2. Equatorial distribution of the Alfv́en velocityA and the
velocity of SMS wavesCS across the magnetic shells (L=a/RE ,
RE is the Earth’s radius).

where1̃ and1 are the differential operators analogous to the
Laplace operator:

1̃ =
g3
√
g

∇1
g2
√
g

∇1 −
k2

2

g2
+ ∇3

g2
√
g

∇3
g1
√
g
,

1 =
B0

P σ0

1
√
g1g2

(
∇1
pP σ0

B0
∇1 −

k2
2

p

P σ0

B0
+ ∇3

√
g

g3

P σ0

ρ0
∇3

ρ0

B0
√
g3

)
.

Equations (12) and (13) form a closed system for the poten-
tialsϕ andψ . In a homogeneous plasma, the right-hand parts
of these equations vanish. Then, the operator in the left-hand
part of (12) provides the dispersion equation for the Alfvén
wavesω2

=k2
‖
A2, wherek2

‖
≡k2

3/g3 is the field-aligned com-
ponent of the wave vector. The operator in the left-hand part
of Eq. (13) yields the dispersion equation for the slow and
fast magnetosonic waves:

ω4
− ω2k2(A2

+ S2)+ k2k2
‖
A2S2

= 0, (14)

where k2
=k2

‖
+ k2

⊥
is the squared total wave vector, and

k2
⊥
=k2

1/g1+k
2
2/g2 is the squared transverse wave vector

component. Thus, Alfv́en oscillations are described by the
scalar potentialϕ, and magnetosonic modes are character-
ized by the longitudinal componentψ of the vector poten-
tial. In an inhomogeneous plasma, the right-hand parts of
Eqs. (12) and (13) describe the interaction of Alfv́en and

magnetosonic modes. The solution of the dispersion equa-
tion (14) can be represented as

ω2
=
k2

2
(A2

+ S2)±

√
k4

4
(A2 + S2)2 − k2k2

‖
A2S2.

Here the plus/minus sign corresponds to the FMS/SMS
waves. If one of the inequalitiesS�A, A�S, or |k‖|�|k⊥|

holds, the following approximate dispersion equations can be
obtained:
ω2

≈k2C2
F for the FMS waves, whereC2

F=A2
+S2 and

ω2
≈k2

‖
C2
S for the SMS waves, whereC2

S=A
2S2/(A2

+S2).
FMS oscillations can freely propagate in the magneto-

sphere within their transparency regions. As for SMS os-
cillations, which, in magnetized plasma, are a modification
of the ion-sound wave branch, some doubts exist whether
they can exist in the magnetosphere as an eigenmode. It is
known (see Krall and Trivelpiece, 1973) that in plasma with a
very anisotropic distribution of ion and electron temperatures
(at Te�Ti), the decrement of these oscillations due to their
interaction with the background plasma ions is sufficiently
small (Imω/Reω∼

√
me/mi�1). In this case, a branch of

almost undamped SMS oscillations can well exist. How-
ever, such conditions are rare enough in the Earth’s magne-
tosphere and can only be realised in the region of maximum
concentration of high-energy electrons in the outer radiation
belt, in the regions of intensive parallel currents, or in the
morning sector of the magnetosphere at the substorm peri-
ods. In other regions of the magnetosphere, the anisotropy
of electron and ion temperatures is more likely to be inverse
(Ti&Te). In this case the decrement of SMS oscillations un-
der study is not small. Estimates show that in homogeneous
plasma Imω/Reω∼0.1, and such oscillations are difficult to
be regarded as an eigenmode. Hopefully, inclusion of plasma
inhomogeneity will decrease the decrement due to the inter-
action of the waves with background ions. This is caused
by deteriorating conditions for resonant interaction between
the waves and particles along geomagnetic field lines. In
this case the SMS oscillations may display themselves as
noneigenmode oscillations driven by an external source. For
example, as is the case in our problem, the decrement of
SMS oscillations may be quite sufficient for them to stand
out against the exciting FMS wave.

In the following calculations we use the spatial distribution
of the plasma and magnetic field parameters provided by the
self-consistent model of the magnetosphere (Leonovich et
al., 2004). Distribution of these parameters in the magnetic
meridian plane corresponds well to a moderately disturbed
dayside magnetosphere. Radial distributions of the Alfvén
velocity A(L, 0) (whereL=a/RE , anda is the equatorial
radius of the magnetic shell) and of the SMS wave velocity
CS(L, 0) in the equatorial plane, according to this model, are
shown in Fig. 2.

At least one of the above mentioned inequalities (e.g.
S�A) is valid throughout the entire magnetosphere (with
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the exception of the plasma layer). In this approximation
the dispersion equation for SMS waves is very similar to the
dispersion equation for Alfv́en waves. The velocity of SMS
waves, as well as of Alfv́en waves, is directed along mag-
netic field lines. In an inhomogeneous plasma this provides a
necessary condition for the resonant excitation of SMS oscil-
lations by monochromatic FMS waves. Although the poten-
tial ψ describes both the fast and slow magnetosonic modes,
in the linear approximation this potential can be decomposed
as the sum of the componentψF , related to the FMS wave,
andψS , related to the SMS wave, that isψ=ψF+ψS . It can
be shown that in a homogeneous plasma the perturbation of
total pressure by SMS waves (ϕ=0,ψ=ψS) is

(
P̃ + Pm

)
/P̃ ∼

(
P̃ + Pm

)
/Pm =

k2
‖

k2

A2

A2 + S2
,

wherePm=B0B‖/4π is the perturbed magnetic pressure. For
oscillations with small-scale transverse structure,k⊥�k‖, it
follows from the above that an SMS wave practically does
not disturb the total pressure

P̃ + Pm ≈ 0. (15)

For the magnetosphere the typical eigenfrequencies of fun-
damental harmonics of standing Alfvén and SMS waves, as
determined by the background plasma, differ considerably.
This means that the interaction of Alfvén and SMS waves,
which may occur in a finite-pressure plasma embedded in a
curved magnetic field (Southwood and Saunders, 1985), is
negligible. Therefore, while examining the SMS oscillation
structure described by Eq. (13), one setsϕ=0 in its right-
hand part.

As will be seen from the calculations below, the resonant
SMS waves are strongly localized across magnetic shells
near the resonant shell. Away from it, the main contri-
bution to potentialψ comes almost exclusively from the
FMS oscillations (ψ≈ψF ). Neglecting the small component
(∼S/A�1) related to the derivatives along the longitudinal
coordinatex3 in the operator̂L0 in Eq. (13), we obtain an
equation that describes the FMS wave field far from the res-
onant surface:

A21̃ψF + S21ψF + ω2ψF = 0. (16)

An approximate solution of Eq. (16) was found by Leonovich
and Mazur (2000). They showed that the back influence from
the resonant mode to the driving FMS wave was small, so the
decoupled Eq. (16) can be used to describe FMS oscillations
throughout the entire region of their existence, even inside
the resonant region.

In the vicinity of the resonant surface the total magnetic
field of magnetosonic oscillations is composed from the FMS
and SMS wave fields:ψ=ψF +ψS . Substituting this expres-
sion for the potentialψ into Eq. (13) and taking into account

Eq. (16) we obtain the equation for the resonant SMS oscil-
lations:

B0
√
g3

4πρ0
L̂0

B0
√
g3
1̃ψS + S21ψS + ω2ψS =

−
A2S2

ω2

ρ0/
√
g1g2

B0P
σ
0

∇3

√
g

g3

P σ0

ρ0
∇3

B0
√
g3
1̃ψF . (17)

The right-hand part of Eq. (17) represents the driver –
monochromatic FMS wave field, that will be treated as a
function known from the solution of Eq. (16). At the frequen-
cies in question the magnetosphere as a whole is an opacity
region for FMS. If we accept that the source of FMS oscilla-
tions is outside of or at the boundary of the magnetosphere,
their amplitudes decreases exponentially inside the magne-
tosphere on a scale proportional tom. FMS oscillations
withm�1 virtually do not penetrate into the magnetosphere.
Only oscillations withm∼1 on resonant shells have an am-
plitude sufficient to drive effectively FMS waves. Therefore,
we shall consider oscillations withm∼1.

3 The boundary condition for the SMS waves in the
ionosphere

To complete the formulation of the resonant SMS wave struc-
ture problem, Eq. (17) should be supplemented by the bound-
ary conditions at some coordinatesx1 andx3. Since we sup-
pose that a desired solution forψS is localized close to the
resonant surface (x1

=x1
res), a natural boundary condition is

that the wave amplitudeψS should decrease away fromx1
res .

Another boundary condition is set at the intersection of ge-
omagnetic field lines with the conductive layer of the north-
ern and southern ionospheres. A solution of the problem
concerning the structure of the Alfvénic-type wave field in
the atmosphere and ionosphere for an inclined geomagnetic
field was found by Leonovich and Mazur (1996). Using the
same approach, we obtain the following ionospheric bound-
ary condition for the transverse components of the SMS wave
electric field

∂En,y

∂l

∣∣∣∣
l=l±

= −i
ω

v±
En,y(l±)− i

In,y(l±)

V±

. (18)

Here the signs “±” refer to the intersection points of the
field lines with the northern and southern ionospheres;l is
the coordinate measured along the field line from the equa-
tor, dl=

√
g3dx

3, andEn=E1/
√
g1 andEy=E2/

√
g2 are

the physical components of the wave electric field. The
other parameters are the ionospheric Pedersen velocityv±
(Leonovich and Mazur, 1991; Pilipenko et al., 2000) andV±

v± =
c2 cosχ±

4π6(±)p

; V± =
ω

v±6
(±)
p

.

The height-integrated (across the ionospheric conducting
layer with thickness1) Pedersen conductivity and surface
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density of transverse external currentj (ext) in the ionosphere
are

6p =

1∫
0

σpdz; Ix,y =

1∫
0

j (ext)x,y dz,

where Ix=In cosχ , andχ is the angle between the verti-
cal and the field line at the intersection point with the upper
boundary of the ionosphere (see Fig. 1). Assuming that in
Eq. (8) only the componentψS , related to the SMS oscilla-
tions, is non-vanishing, we obtain from Eq. (18):

ψS |l=l± = ∓i
v±

ω

∂ψS

∂l

∣∣∣∣
l=l±

+ i
J (±)

6
(±)
P

, (19)

where the functionsJ (±)≡J (l=l±) are related to the density
of external currents in the ionosphere by

1⊥J =

1∫
0

(
∇ × j (ext)

)
z
dz,

where1⊥=∇
2
x+∇

2
y is the transverse Laplacian. The first

term in the right-hand part of Eq. (19) describes the decay
of SMS waves due to the Joule dissipation in the conducting
ionosphere, while the second item describes a possible driv-
ing of SMS waves by external currents in the ionosphere.

4 The field-aligned structure of standing SMS waves

In the following calculations we will consider the field-
aligned structure of several first harmonics of standing SMS
waves. Typical field-aligned wave length of such oscillations
is on the order of the field line length. As we will see, the
typical scale of resonant SMS oscillations across magnetic
shells is much smaller than their longitudinal wave length,
|∇1ψs/ψs |�|∇3ψs/ψs |. Therefore, a solution to Eq. (17)
may be sought using the method of different scales, repre-
senting the potentialψS as

ψS = U(x1)(S(x1, x3)+ h(x1, x3)), (20)

where the functionU(x1) describes the small-scale trans-
verse structure of oscillations along the coordinatex1 in the
main order, whereas the functionS(x1, x3) describes the os-
cillation structure along magnetic field lines. The typical
scale ofS(x1, x3) along x1 is assumed to be much larger
than the scale ofU(x1). The small correction termh(x1, x3)

describes the oscillation structure in higher orders of the per-
turbation theory.

An equation for the longitudinal structure can be obtained
if one retains in Eq. (17) only the main-order terms (∼∇

2
1ψS)

of the perturbation theory:

ρ0p
−1

B0P
σ
0

∇3

√
gP σ0

g3ρ0
∇3

B0

g1
√
g3
S +

ω2

C2
S

S = 0. (21)

We assume that the functionsS(x1, x3) in the main order
satisfy the homogeneous boundary conditions in the iono-
sphere:S(x1, x3

±)=0. The solution of the spectral problem
(21) are the eigenfunctionsSN (x1, x3) (N=1, 2, 3... is the
harmonic number) and the corresponding eigenfrequencies
ω2

=�2
SN . The eigenfunctions are normalized by the follow-

ing condition

l+∫
l−

pP σ0

g1g3

A2

C2
S

S2
Ndl = 1. (22)

In order to obtain a qualitative representation of the structure
of the eigenfunctionsSN (x1, x3) in question, let us find a
solution to Eq. (21) in the WKB approximation, applicable
for harmonics withN�1. Using the standard method (e.g.
Leonovich and Mazur, 1993), one may find the solution of
Eq. (21) normalized by the condition (22), in the first two
orders of the WKB approximation as follows

SN (x
1, x3) =

√√√√ 2

tS

g3g
3/2
1

P σ0 g
1/2
2

CS

A2
sin

�SN l∫
l−

dl

CS

 . (23)

Here�SN is the eigenfrequency determined by the travel
time tS of SMS wave between the conjugate ionospheres,
namely

�SN =
2πN

tS
, tS =

l+∫
l−

dl

CS
. (24)

A solution to Eq. (21) for the fundamental and lower har-
monics (N∼1) can be found only numerically. The numer-
ical solution of Eq. (21) in the magnetosphere model under
consideration is discussed in Sect. 7.

5 Transverse structure of the resonant SMS-wave

We assume that there are no external currents in the iono-
sphere, so the correction termhN (x1, x3) in Eq. (20) satisfies
the following ionospheric boundary condition (see Eq.19):

hN |l=l± = ∓iUN (x
1)
v±

ω

∂SN

∂l

∣∣∣∣
l=l±

. (25)

Let us pre-multiply Eq. (17) by SNpP σ0 /
√
g3S

2 and inte-
grate along the field line between the conjugate ionospheres.
Taking into account (21) and the boundary condition (25),
we obtain for the functionUN (x1) the following equation:

(ω2
+ iγN )

2
−�2

SN

ω2
∇

2
1U

2
N − (26)[

β1N + (k2
2β2N + β3N )

(ω2
+ iγN )

2
−�2

SN

ω2

]
UN = 0N ,
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where

β1N =

l+∫
l−

pP σ0

g3
SN

(
∇3

g2
√
g

∇3
g1
√
g
SN +

�2
SN

C2
S

SN

)
dl,

β2N =

l+∫
l−

pP σ0

g2g3

A2

C2
S

S2
Ndl,

β3N = −

l+∫
l−

pP σ0

g3

A2

S2
SN∇3

g2
√
g

∇3
g1
√
g
SNdl,

0N =
�2
SN

ω2

l+∫
l−

pP σ0

g3

A2

C2
S

SN 1̃ψF dl.

The damping rate caused by the Joule dissipation of the
SMS wave energy in the northern (l=l+) and southern (l=l+)
ionospheres is described by

γN =
1

2�2
SN

[
pP σ0 A

2

g1g3
v+

∂SN

∂l

∣∣∣∣
l=l+

+

pP σ0 A
2

g1g3
v−

∂SN

∂l

∣∣∣∣
l=l−

]
. (27)

The expressions for the coefficients of Eq. (26) become
much simpler for oscillations withN�1, when the WKB ap-
proximation along the longitudinal coordinate is applicable,
namely

β1N ≈ 0, β2N ≈
1

tS

l+∫
l−

g1

g2

dl

CS
, β3N ≈

�2
SN

TS

l+∫
l−

g1dl

CSS2
,

γN =
1

tS

[
v+

C+

S

+
v−

C−

S

]
.

In this approximation the damping rate does not depend on
the harmonic numberN or oscillation frequency of standing
SMS waves.

Now we find a solution to Eq. (26) in the vicinity of
the resonant magnetic shellx1

=x1
SN , whereω=�SN (x

1
SN ).

Let the function�SN (x1) change monotonically, so that in
the vicinity of the resonant surface one may approximate
�SN (x

1) by a linear dependence

�SN (x
1) ≈ ω

(
1 −

x1
− x1

SN

L

)
. (28)

This approximation is valid at|x1
−x1

SN |�L, where
L=|∂ ln�SN/∂x1

|
−1 is the typical scale of�SN variation

at the pointx1
=x1

SN . Substituting Eq. (28) into Eq. (26) and
introducing the dimensionless variableξ=(x1

−x1
SN )/λSN ,

whereλSN=1/
√
β3N , we obtain an equation describing the

transverse structure of magnetosonic resonance

(ξ + iε)
∂2UN

∂ξ2
− [cN + (1 + dN )(ξ + iε)]UN = GN . (29)

The coefficients of this equation are:ε=γNL/ωλSN is
the dimensionless width of the resonance,cN=β1NLλSN ,
dN=β2Nk

2
2λ

2
SN , andGN=0NλSNL. These coefficients may

be considered as constants because they vary insignificantly
within the localization region of the desired solutionUN (ξ).

Solution to Eq. (29) can be found by representing the de-
sired functionUN (ξ) as a Fourier integral

UN (ξ) =
1

√
2π

∞∫
−∞

UN (k)e
ikξdk.

Substituting this equation into Eq. (29) we obtain a first-order
differential equation for the functionUN (k). This equation
can be solved easily (Leonovich and Mazur, 1997), and after
the inverse Fourier transformation we obtain a solution to the
initial equation in the form

UN (ξ) = iGN (0)

∞∫
0

exp[ik(ξ + iε)+ iζ(k)]

k2 + 1 + dN
dk, (30)

where

ζ(k) =
cN

√
1 + dN

arctan
k

√
1 + dN

.

Let us consider the behavior ofUN (ξ) in the region near
the resonant plane(ξ→0) and at large asymptotic distances
(|ξ |→∞). As ξ→0 the bulk of the integrand (30) accumu-
lates in the domaink�1, so that one may setζ(k)≈ζ(∞)

in the exponent, and neglect all the terms butk2 in the de-
nominator. Thus, we obtain an expression for the second
derivative

U ′′

N (ξ)
ξ→0
≈

GN (0)eiζ(∞)

(ξ + iε)
.

After integration of this expression we obtain

UN (ξ)
ξ→0
≈ GN (0)e

iζ(∞)(ξ + iε) ln(ξ + iε). (31)

Such asymptotic behavior ofUN (ξ) at ξ→0 can also be ob-
tained from Eq. (29) by the Frobenius method.

In the asymptotic|ξ |→∞ the bulk of the integrand (30)
accumulates in the domaink�1, so that one may setk=0 in
ζ(k) and in the denominator. After that the integral is easily
calculated

UN (ξ)
|ξ |→∞

≈ −
GN (0)

1 + dN

1

ξ + iε
. (32)

Thus, the amplitude of the resonant SMS oscillations away
from the resonant plane decreases asymptotically as∝ |ξ |−1.
Such behavior satisfies the boundary conditions on the coor-
dinatex1.
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6 Spatial structure of the SMS wave components in the
resonant region

Let us consider the behavior of various components of the
field of resonant SMS oscillations close to the resonant shell,
|ξ |→0. For the magnetic field components we use the ex-
pressions (9) in which we setϕ=0, andψ=ψSN . Using
the relationship (31) as an approximate representation of the
functionUN (ξ), we obtain

B1N ≈ −i
BN

λSN
ln(ξ + iε)

(
g1
√
g

∇3
g2
√
g
SN

)
,

B2N ≈ k2BN (ξ + iε) ln(ξ + iε)

(
g2
√
g

∇3
g1
√
g
SN

)
,

B3N ≈ i
BN

λ2
SN

1

(ξ + iε)

SN

g1
,

whereBN=(c/ω)GN (0)eiζ(∞). The longitudinal (compres-
sional) magnetic componentB3N has the strongest singu-
larity, ∝ ξ−1. The radial magnetic componentB1N has a
weaker logarithmic singularity, but it dominates close to the
ionosphere, where the componentB3N ∝ SN (x

1, x3) has a
node. The azimuthal componentB2N is regular.

For the electric field components we use Eqs. (8). Substi-
tuting into themUN in the form of Eq. (31) we obtain

E1N ≈ ik2EN (ξ + iε) ln(ξ + iε)

(
g1
√
g
SN

)
,

E2N ≈ −
EN

λSN
ln(ξ + iε)

(
g2
√
g
SN

)
,

whereEN=GN (0)eiζ(∞). The azimuthal electric component
E2N has a weak logarithmic singularity asξ→0, whereas the
radial componentE2N is finite at the resonant point.

For the velocity components, the relationships (10), as
well as Eq. (11) relating the perturbed velocity to the per-
turbed pressure, give us

v1N ≈ −
vN

λSN
ln(ξ + iε)

SN
√
g3
,

v2N ≈ −ik2vN (ξ + iε) ln(ξ + iε)
SN
√
g3
,

v3N ≈ −
vN/ρ0

λ2
SNω

2

1

(ξ + iε)
∇3
A2ρ0

g1

SN
√
g3
,

wherevN=(c/B0)GN (0)eiζ(∞). The spatial structure of the
oscillatory plasma velocity is somewhat different from the
electromagnetic field structure. Both transverse components
v1N andv2N have a node close to the ionosphere. Thus, the
longitudinal field-aligned componentv3N , having a singular-
ity ∝ ξ−1, dominates throughout an entire resonant region.

The expression for the perturbed plasma pressure near the
resonant plane has the form

P̃N ≈ −i
BNB0

4πλ2
SN

1

(ξ + iε)

SN

g1
√
g3
.

Thus, the oscillatory plasma pressure, like the magnetic field
compressionB3N , has a singular character in the resonant re-
gion. As expected, the pressure oscillations are out of phase
with the oscillations of the magnetic field compression. It is
easy to verify that for the field components of the resonant
SMS wave the condition (15) of vanishing total pressure is
met.

7 Results of numerical calculations

Only numerical solutions can be found to Eqs. (21) and (29),
describing the spatial structure of magnetosonic resonance,
for the fundamental and low-N harmonics. For a numerical
solution we use the coordinate system (a, φ, θ ) related to the
dipole magnetic field lines (Fig. 1):a is the equatorial ra-
dius of the field line,φ is the azimuthal angle, andθ is the
latitude measured from the equator. In this coordinate sys-
tem the length of the radius vector to a field line point (r, θ)
is r=a cos2 θ , and the length element along this field line is

dl=a cosθ
√

1 − 3 sin2 θ . The dipole magnetic field magni-
tude is

B0(a, θ) = B0

(a0

a

)3
√

1 − 3 sin2 θ

cos6 θ
,

and the metric tensor components are

g1 =
cos6 θ

1 − 3 sin2 θ
, g2 = a2 cos6 θ.

However, there is no similar simple relationship for the com-
ponentg3. It can be determined through the ratio of the seg-
ments of field lines with equatorial radiia0 anda crossed by
two nearby coordinate planesx3

=const at latitudesθ0 andθ ,
respectively:

g3(a, θ)

g3(a0, θ0)
=

(
a

a0

)6( cosθ

cosθ0

)12 1 − 3 sin2 θ0

1 − 3 sin2 θ
.

The plasma distribution is specified using the self-consistent
model of the dipole magnetosphere (Leonovich et al., 2004).
Radial distributions of the Alfv́en and magnetosonic veloci-
ties in the equatorial magnetospheric plane derived from this
model are shown in Fig. 2. All the following calculations
have been made for the magnetic shell corresponding to the
geosynchronous orbit,a=6.6RE .

Figure 3a shows the radial distributions of the eigenfre-
quencies of the first three harmonics of standing SMS waves,
obtained from the numerical solution of Eq. (21) with the ho-
mogeneous boundary conditions at the ionosphere. For com-
parison, Fig. 3b shows similar distributions of the first three
harmonics of standing Alfv́en waves for the same model of
the magnetosphere. Each figure lists the travel time along
the field line between the conjugate ionospheres for the SMS
wave (tS) and Alfvén wave (tA). These travel times deter-
mine the oscillation eigenfrequencies in the WKB approx-
imation. In contrast to the Alfv́en waves, the frequencies
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Fig. 3. (a)Distribution across the magnetic shells of eigenfrequen-
ciesfSN of the first three harmonics of standing SMS waves and
the travel time along the field line between conjugate ionospheres
tS with the SMS wave velocityCS . (b) Same, for a standing Alfv́en
wave.

of fundamental harmonics of SMS waves differ greatly from
their values in the WKB approximation. For example, the
difference between the exact eigenfrequencies of the first
SMS harmonic and their WKB estimates is nearly 5-fold.

Additionally, we would like to pay special attention to the
dramatic difference, about two orders of magnitude, between
the eigenfrequencies of Alfvén and SMS fundamental har-
monics. We can show that the longitudinal structure and the
spectrum of SMS oscillations withm�1 are determined by
an equation analogous to Eq. (21) which is obtained from

��
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�

Fig. 4. Structure along the magnetic field lines of the first three har-
monics of standing Alfv́en wavesTN (θ) (N=1,2, 3) (dashed lines)
and SMS wavesSN (θ) (N=1,2,3) (solid lines) at the magnetic
shella=6.6RE . Both functions are normalized to unity.

Eq. (17) in the limit k2→∞. The spectrum of such oscilla-
tions practically coincides with the spectrum of oscillations
with m∼1. This means that an effective interaction between
the Alfvén and SMS oscillations is impossible in the magne-
tosphere which is mildly disturbed by the ring current. This
interaction can only be effective in a plasma wheretS'tA,
which may occur in the magnetospheric regions populated
with the hot plasma sheet or ring current particles.

Figure 4 shows the field-aligned structures of the first three
harmonics of standing Alfv́en and SMS waves. Both for the
resonant Alfv́en and for the SMS waves, the solution can be
represented in the form∝ VN (x

1)TN (x
1, x3), N=1, 2, 3,

where the functionVN (x1) describes the small-scale struc-
ture of oscillations across magnetic shells, while the function
TN (x

1, x3) describes their field-aligned structure. We ap-
ply here the solution of the Alfv́en resonance problem in the
model magnetosphere under consideration from Leonovich
(2001). One can see from the figure how very different the
longitudinal structures of the Alfv́en and SMS waves are. For
the Alfvén waves the actual field-aligned structure resembles
the expected WKB approximation picture. The fundamen-
tal harmonics of standing SMS waves differ from their WKB
representation (23) radically.

A small blip in theSN (x1, x3) curve atθ≈±28◦ is related
to the peculiarity of the employed magnetospheric model,
in which a double plasmapause occurs. In the vicinity of
θ≈±28◦ the magnetic field line crosses the second plasma-
pause which does not coincide with the magnetic shell.
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Fig. 5. Transverse structure of magnetic field components
(i=x, y, z) of the first harmonic (N=1) of the SMS oscillations in
the resonant region nearL=6.6: (a) the amplitude|Bi | and phaseαi
distributions close to the equatorial plane, and(b) above the iono-
sphere. At the ionospheric boundary the compressional component
Bz vanishes.

The main peculiarity of fundamental SMS harmonics is
the fast decrease of their amplitude upon approaching the
ionosphere. Such a structure ofSN (x1, x3) results in a num-
ber of important consequences. First, resonant SMS oscilla-
tions are impossible to detect on the ground or by a low-orbit
satellite. Second, the ionosphere cannot play any significant
role either in the generation or energy absorption of mag-
netospheric SMS waves. This statement follows, for exam-
ple, from the form of the expression for the damping rate of
SMS waves in the ionosphere. From Eq. (27) it follows that
γN∼(∂SN/∂l)l=l±→0. An analogous result can also be ob-

tained for the external currents in the ionosphere (see Eq.19),
as a possible driver of SMS oscillations. Thus, the iono-
sphere can neither be a source nor an absorber of the SMS
wave energy. SMS wave damping in the magnetosphere must
be caused by other mechanisms, probably by their resonant
interaction with the the background plasma particles.

Figure 5 shows the radial amplitude-phase struc-
ture of the physical components of the wave magnetic
field (Bx≡B1/

√
g1=|Bx |e

iαx , By≡B2/
√
g2=|By |e

iαy , and
Bz≡B3/

√
g3=|Bz|e

iαz ) of the fundamental harmonic (N=1)
of SMS waves near the resonant magnetic shella=6.6RE .
Figure 5a shows the oscillation structure in the near-
equatorial region (far from the nodes of the functionsSN and
∂SN/∂l). The response shown to the FMS pumping wave
is normalized in such a way as to make the peak value at
the resonance|Bz|=1. The initial oscillation phase is chosen
to be zero in an asymptotically distant region to the right of
the resonant shell. For numerical calculations the damping
rate and imaginary correction factor were chosen to be rather
small,ε=10−2, to make the resonant structure evident. The
magnitude of the resonant enhancement of SMS oscillations
is controlled by the magnitude of the FMS pumping wave
and damping rate. WhenγN andε increase, the amplitude
maximum decreases and the resonant peak widens. Passing
across the resonant peak the phase of the compressionalBz
component changes approximately byπ , the phase of theBx
component by∼π/2, while the phase of theBy component
remains practically the same.

Figure 5b shows the radial distributions of transverse|Bx |

and|By | components of the oscillation field close to the iono-
sphere. It should be remembered that the|Bz| component
vanishes in the ionosphere, so that immediately above the
ionosphere the horizontal magnetic components prevail over
the compressional component. However, because of the fast
decrease in the function∂SN/∂l when approaching the iono-
sphere (Fig. 4), the amplitudes of transverse magnetic com-
ponents are very small close to the ionosphere as compared
to their equatorial values.

For comparison, Fig. 6 shows similar calculations for the
magnetic components of resonant Alfvén waves. Unlike
SMS oscillations, the amplitude of Alfvén oscillations in-
creases (approximately two-fold) from the equator to the
ionosphere, owing to the convergence of dipole field lines.
The difference in field-aligned structure of the Alfvén and
magnetosonic waves may be qualitatively explained as fol-
lows. According to the WKB solution (23), the SMS wave
amplitude varies as∝ SN (x

1, x3) ∝ A−1, whereas an anal-
ogous function for the Alfv́en waves∝ TN (x

1, x3) ∝
√
A.

The Alfvén velocityA increases by two orders of magnitude
from the equator to the ionosphere. This results in the in-
crease of the Alfv́en wave amplitude and a fast decrease of
the SMS wave amplitude. Some weaker contributions to the
amplitude change are provided by variations of other param-
eters – the metric tensor components and background plasma
pressure.
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For low-frequency FMS waves the Earth is located in the
opacity region. Therefore, only large-scale FMS oscillations
can reach the ionosphere, though attenuated, but with de-
tectable amplitude. Part of the FMS wave energy is reso-
nantly converted into Alfv́en or SMS oscillations. The SMS
waves are localized near the equatorial plane of the magne-
tosphere, so that the Alfvén waves are the only component of
MHD oscillations which can reach the Earth’s surface.

8 Discussion

Satellite observations of intense long-period ULF waves
show an antiphase relationship between the magnetic field
compression and plasma pressure variations. This rela-
tionship is a persistent feature of storm-time Pc5 waves
(Barfield and McPherron, 1978; Woch et al., 1990), Pg pul-
sations (Glassmeier et al., 1999), nightside Pi2-like waves
(Nakamizo and Iijima, 2003), etc. This kind of diamagnetic
behavior is specific to the SMS mode, thus indicating its in-
volvement in the observed wave structure.

Numerous theories aimed at interpreting the physical
mechanism of Pc4-5 waves with dominant compressional
magnetic component were based on the notion of Alfvén os-
cillations coupled with the SMS mode and modified by drift
effects and excited by resonant interaction with ring current
protons. These theories fairly reasonably explained the ob-
servational data, so there was a feeling that the theory of
compressional Pc4-5 wave generation was nearly complete
(see review by Pilipenko, 1990). However, Takahashi et
al. (1987) found a “global Pc5” event where the field-aligned
wave scale was much smaller than the Alfvén wavelength.
The unique combination of several near-geostationary satel-
lites during the 14–15 November 1979 event gave the possi-
bility to determine the field-aligned structure of exception-
ally monochromatic and long-lasting (∼44 h), long-period
Pc5-6 oscillations. Rather surprisingly, the field-aligned
wave scale (distance from top of field line to wave node)
was about 5◦ only, much less than the expected Alfvén wave
length. Further, Woch et al. (1988) showed that the dras-
tic changes in the compressional Pc5 wave structure during
a slight shift of the GEOS-2 satellite from the top of the
field line could only be interpreted by invoking a small field-
aligned wave scale. These observations revealed that in the
magnetosphere there is at least one sub-class of long-period
waves for which all the previously well-elaborated theories
of Alfv én mode excitation are not valid. However, these ob-
servations still remain the only evidence of the possible oc-
currence of very small field-aligned structure of long-period
ULF waves.

The difficulties with the interpretation of compressional
Pc4-5 waves with a short field-aligned scale may be resolved
by invoking models based on the excitation of SMS modes.
The SMS oscillations can be spontaneously generated during
the drift instability of ring current ions with steep radial gra-
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Fig. 6. Transverse structure of magnetic components of the fun-
damental (N=1) Alfv én oscillations in the region of “classical”
Alfv én field line resonance atL=6.6 (compare with Fig. 5): the dis-
tribution of the wave amplitude|Bi | and phaseαi , (i=x, y) close to
the equatorial plane(a) and above the ionosphere(b).

dients. The field-aligned structure of an unstable SMS mode
was shown by Woch et al. (1988) to be much smaller than a
field line length.

Our theory predicts that there might be an additional
source of compressional Pc4-5 oscillations – the resonant
conversion of FMS waves. This mechanism can be most
efficient in a mildly disturbed magnetosphere, when fluxes
of ring current ions are too low for excitation of instabili-
ties. The mechanism of the drift or bump-on-tail instabilities

www.ann-geophys.net/24/2277/2006/ Ann. Geophys., 24, 2277–2289, 2006



2288 A. S. Leonovich et al.: Magnetosonic resonance in a dipole-like magnetosphere

dominates during the main and recovery phases of magnetic
storms, when a sufficient amount of the ring current parti-
cles have been injected into the inner magnetosphere. The
slow velocity of SMS mode results in the severe damping
of the SMS mode in an isothermal (Te'Ti) plasma, owing
to the interaction with background thermal ions. Thus, this
mode may occur in a realistic magnetosphere only upon per-
manent driving, such as the considered pumping of external
FMS wave energy into the resonant region. In this aspect,
the SMS mode could be an intermediary, transferring energy
from solar wind flow to external magnetospheric MHD dis-
turbances, and eventually to localized plasma heating.

The comparison of field-aligned structure of the Pc5 event
observed by Takahashi et al. (1988) with the predictions of
our theoretical model shows that this scale matches well the
results of numerical modeling of the field-aligned SMS os-
cillation structure (functionS4) of the harmonic withN=4.
The polarization structure of the magnetic components in the
magnetosonic resonance,Bz�Bx>By , corresponds to the
class of compressional poloidal waves in the magnetosphere.

The drift instability mechanism can be operative chiefly
during the main and recovery phases of magnetic storms
when a sufficient amount of the ring current particles have
been injected into the inner magnetosphere.

The SMS waves are to be strongly absorbed by resonant
interaction with background thermal particles, while with-
out energy pumping by an FMS mode they should soon die
down. Thus, the resonant excitation of SMS oscillations can
be an intermediary, transferring energy from the solar wind
for the heating of the magnetospheric near-equatorial plasma.

9 Conclusion

In this paper we would like to draw attention to the possibil-
ity of resonant conversion of large-scale MHD disturbances
into localized SMS oscillations. We have derived Eqs. (21)
and (29), describing the structure and spectrum of resonant
standing SMS waves in a dipole-like magnetosphere. We
have also obtained the boundary conditions (19) for the res-
onant SMS waves at the ionosphere. Solutions have been
found to equations describing the structure of resonant SMS
oscillations, both along magnetic field lines,SN (x1, x3), and
across magnetic shells,UN (x1). Field-aligned structure has
been examined both in the WKB approximation (23) and nu-
merically (Fig. 5). It was shown that the amplitude of stand-
ing SMS waves decreases fast upon approaching the Earth’s
ionosphere. In this context, the conclusion has been made
that the ionosphere cannot play any significant role either in
the generation or dissipation of magnetospheric SMS waves.
The SMS oscillations could be observed only near the mag-
netospheric equatorial plane.

Comparison of spatial structures and spectra of the Alfvén
and SMS waves generated via the Alfvén and magnetosonic
resonances (Figs. 3–6) has been made. The frequency spectra

of the fundamental harmonics of standing Alfvén and SMS
waves differ by about two orders of magnitude, so an effec-
tive coupling between these two branches of MHD oscilla-
tions is impossible in a mildly disturbed magnetosphere. The
resonantly excited SMS oscillations can be an intermediary,
transferring energy from the solar wind to the heating of the
magnetospheric near-equatorial plasma.
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