Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan

Masashi Hayakawa^{1*}, Kenji Ohta², Alexander P. Nickolaenko^{1, 3} and Yoshiaki Ando¹

- 1) The University of Electro-Communications, Department of Electric Engineering, 1-5-1 Chofugaoka, Chofu Tokyo 182-8585, Japan, hayakawa@whistler.ee.uec.ac.jp
- 2) Chubu University, Department of Electronics Engineering, 1200 Matsumoto-cho Kasugai, Aich, 487-8501, Japan
- 3) Institute of Radiophysics and Electronics, Academy of Sciences of Ukrine, Kharkov Ukraine

Abstract

Schumann resonance phenomena have been monitored at Nakatsugawa (near Nagoya) in Japan since 1999, and we have observed a very anomalons effect in the Schumann resonance, possibly related to a large earthquake (Chi-chi earthquake) in Taiwan on 21 September, 1999. The anomaly is characterized mainly by the unusual enhancement at the fourth harmonic and a significant frequency shift (\sim 1.0Hz) from the conventional value at this harmonic on the B_y magnetic field component sensitive to the waves propagating in the N-S meridian plane. The association of this anomaly in the Schumann resonance phenomena at Nakatsugawa is likely to be related with the large Chi-chi earthquake in Taiwan on 21 September because of the following reasons. First, this anomaly is taking place about one week to a few days before the Chi-chi earthquake (The similar anomaly in the Schumann resonance is again reconfirmed for one more large earthquake in December, 2003 with a lead time of about one week). Secondly, the goniometric direction finding for this anomalous Schumann resonance indicates the azimuthal direction toward Taiwan (or South America). Also, the Q-bursts simultaneously observed are found to exhibit the main frequency just around this fourth harmonic. A possible generation mechanism of this anomaly is suggested in terms of the wave interference in such a way that the

noise source is lightning in the South America (Amazon) and the wave reflection from the perturbation in Taiwan.